An Experimental Setup for Production of Polarized H2 and D2 Molecules
Tóm tắt
The setup is designed to produce spin-polarized hydrogen and deuterium molecules. Superconducting sextupole magnets with a magnetic induction of 3.4 T near the poles and a field gradient of 320 T/m were used for the spatial separation of molecules with different magnetic moments by spin filtration in an inhomogeneous magnetic field. The choice of the location of the polarized-molecule source elements is justified. Cryogenic pumps are used in the molecular-beam detection chamber in order to obtain an ultrahigh vacuum. At a nozzle temperature of 7 K, the measured flux of spin-polarized hydrogen molecules is 3 × 1012 molecules/s. For deuterium, the measured flux is lower by more than seven times due to the small magnetic moments.
Tài liệu tham khảo
Ciullo, G., Engels, R., Büscher, M., and Vasilyev, A., Springer Proc. Phys., 2016, vol. 187. https://doi.org/10.1007/978-3-319-39471-8_1
Leemann, Ch., Bürgisser, H., Huber, P., Rohrer, U., Paetz gen. Schieck, H., and Seiler, F., Helv. Phys. Acta, 1971, vol. 44, p. 141. https://doi.org/10.5169/seals-114273
Steffens, E. and Haeberli, W., Rep. Prog. Phys., 2003, vol. 66, p. 1. https://doi.org/10.1088/0034-4885/66/11/R02
Toporkov, D.K., Proc. 15th Int. Workshop on Polarized Sources, Targets, and Polarimetry, Charlottesville, VA, 2013, p. 064.
Garwin, R.L., Rev. Sci. Instrum., 1958, vol. 29, p. 374. https://doi.org/10.1063/1.1716200
Xiao, Y.M., Buchman, S., Pollack, L., Kleppner, D., and Greytak, T.J., Phys. Rev. B, 1993, vol. 48, p. 15744. https://doi.org/10.1103/PhysRevB.48.15744
Engels, R., Gaißer, M., Gorski, R., Grigoryev, K., Mikirtychyants, M., Nass, A., Rathmann, F., Seyfarth, H., Ströher, H., Weiss, P., Kochenda, L., Kravtsov, P., Trofimov, V., Tschernov, N., Vasilyev, A., Vznuzdaev, M., and Paetz gen. Schieck, H., Phys. Rev. Lett., 2015, vol. 115, p. 113007. https://doi.org/10.1103/PhysRevLett.115.113007
Dyug, M.V., Lazarenko, B.A., Mishnev, S.I., Nikolenko, D.M., Rachek, I.A., Sadykov, R.Sh., Toporkov, D.K., Zevakov, S.A., Osipov, A.V., and Stibu-nov, V.N., Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 495, p. 8. https://doi.org/10.1016/S0168-9002(02)01572-3
Toporkov, D.K., Gramolin, A.V., Nikolenko, D.M., Rachek, I.A., Sadykov, R.Sh., Shestakov, Yu.V., and Zevakov, S.A., JETP Lett., 2017, vol. 105, no. 5, p. 289. https://doi.org/10.1134/S0021364017050125
Toporkov, D.K., Gramolin, A.V., Nikolenko, D.M., Rachek, I.A., Sadykov, R.Sh., Shestakov, Yu.V., Yurchenko, A.V., and Zevakov, S.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 868, p. 15. https://doi.org/10.1016/j.nima.2017.06.038
Frisch, R. and Stern, O., Z. Phys., 1933, vol. 85, p. 4. https://doi.org/10.1007/BF01330773
Ramsey, N.F., Phys. Rev., 1952, vol. 85, p. 60. https://doi.org/10.1103/PhysRev.85.60
Isaeva, L.G., Lazarenko, B.A., Mishnev, S.I., Nikolenko, D.M., Popov, S.G., Rachek, I.A., Shestakov, Yu.V., Toporkov, D.K., Vesnovsky, D.K., and Zevakov, S.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 1998, vol. 411, p. 201. https://doi.org/10.1016/S0168-9002(98)00352-0
Yurchenko, A.V., Nikolenko, D.M., Rachek, I.A., Shestakov, Yu.V., Toporkov, D.K., and Zorin, A.V., J. Phys.: Conf. Ser., 2017, vol. 938, p. 012023. https://doi.org/10.1088/1742-6596/938/1/012023
Kikola, D., Echevarria, M.G., Hadjidakis, C., Lansberg, J.P., Lorce, C., Massacrier, L., Quintans, C., Signori, A., and Trzeciak, B., Few-Body Syst., 2017, vol. 58, p. 139. https://doi.org/10.1007/s00601-017-1299-x