An Experimental Setup for Production of Polarized H2 and D2 Molecules

Springer Science and Business Media LLC - Tập 62 - Trang 56-61 - 2019
D. K. Toporkov1,2, S. A. Zevakov1, D. M. Nikolenko1, I. A. Rachek1, Yu. V. Shestakov1,2, A. V. Yurchenko2
1Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia

Tóm tắt

The setup is designed to produce spin-polarized hydrogen and deuterium molecules. Superconducting sextupole magnets with a magnetic induction of 3.4 T near the poles and a field gradient of 320 T/m were used for the spatial separation of molecules with different magnetic moments by spin filtration in an inhomogeneous magnetic field. The choice of the location of the polarized-molecule source elements is justified. Cryogenic pumps are used in the molecular-beam detection chamber in order to obtain an ultrahigh vacuum. At a nozzle temperature of 7 K, the measured flux of spin-polarized hydrogen molecules is 3 × 1012 molecules/s. For deuterium, the measured flux is lower by more than seven times due to the small magnetic moments.

Tài liệu tham khảo

Ciullo, G., Engels, R., Büscher, M., and Vasilyev, A., Springer Proc. Phys., 2016, vol. 187. https://doi.org/10.1007/978-3-319-39471-8_1 Leemann, Ch., Bürgisser, H., Huber, P., Rohrer, U., Paetz gen. Schieck, H., and Seiler, F., Helv. Phys. Acta, 1971, vol. 44, p. 141. https://doi.org/10.5169/seals-114273 Steffens, E. and Haeberli, W., Rep. Prog. Phys., 2003, vol. 66, p. 1. https://doi.org/10.1088/0034-4885/66/11/R02 Toporkov, D.K., Proc. 15th Int. Workshop on Polarized Sources, Targets, and Polarimetry, Charlottesville, VA, 2013, p. 064. Garwin, R.L., Rev. Sci. Instrum., 1958, vol. 29, p. 374. https://doi.org/10.1063/1.1716200 Xiao, Y.M., Buchman, S., Pollack, L., Kleppner, D., and Greytak, T.J., Phys. Rev. B, 1993, vol. 48, p. 15744. https://doi.org/10.1103/PhysRevB.48.15744 Engels, R., Gaißer, M., Gorski, R., Grigoryev, K., Mikirtychyants, M., Nass, A., Rathmann, F., Seyfarth, H., Ströher, H., Weiss, P., Kochenda, L., Kravtsov, P., Trofimov, V., Tschernov, N., Vasilyev, A., Vznuzdaev, M., and Paetz gen. Schieck, H., Phys. Rev. Lett., 2015, vol. 115, p. 113007. https://doi.org/10.1103/PhysRevLett.115.113007 Dyug, M.V., Lazarenko, B.A., Mishnev, S.I., Nikolenko, D.M., Rachek, I.A., Sadykov, R.Sh., Toporkov, D.K., Zevakov, S.A., Osipov, A.V., and Stibu-nov, V.N., Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 495, p. 8. https://doi.org/10.1016/S0168-9002(02)01572-3 Toporkov, D.K., Gramolin, A.V., Nikolenko, D.M., Rachek, I.A., Sadykov, R.Sh., Shestakov, Yu.V., and Zevakov, S.A., JETP Lett., 2017, vol. 105, no. 5, p. 289. https://doi.org/10.1134/S0021364017050125 Toporkov, D.K., Gramolin, A.V., Nikolenko, D.M., Rachek, I.A., Sadykov, R.Sh., Shestakov, Yu.V., Yurchenko, A.V., and Zevakov, S.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 868, p. 15. https://doi.org/10.1016/j.nima.2017.06.038 Frisch, R. and Stern, O., Z. Phys., 1933, vol. 85, p. 4. https://doi.org/10.1007/BF01330773 Ramsey, N.F., Phys. Rev., 1952, vol. 85, p. 60. https://doi.org/10.1103/PhysRev.85.60 Isaeva, L.G., Lazarenko, B.A., Mishnev, S.I., Nikolenko, D.M., Popov, S.G., Rachek, I.A., Shestakov, Yu.V., Toporkov, D.K., Vesnovsky, D.K., and Zevakov, S.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 1998, vol. 411, p. 201. https://doi.org/10.1016/S0168-9002(98)00352-0 Yurchenko, A.V., Nikolenko, D.M., Rachek, I.A., Shestakov, Yu.V., Toporkov, D.K., and Zorin, A.V., J. Phys.: Conf. Ser., 2017, vol. 938, p. 012023. https://doi.org/10.1088/1742-6596/938/1/012023 Kikola, D., Echevarria, M.G., Hadjidakis, C., Lansberg, J.P., Lorce, C., Massacrier, L., Quintans, C., Signori, A., and Trzeciak, B., Few-Body Syst., 2017, vol. 58, p. 139. https://doi.org/10.1007/s00601-017-1299-x