An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model

Psychometrika - Tập 80 - Trang 949-967 - 2015
Michael J. Brusco1, Hans-Friedrich Köhn2, Douglas Steinley3
1Florida State University, Tallahassee, USA
2University of Illinois at Urbana-Champaign, Champaign, USA
3University of Missouri-Columbia, USA

Tóm tắt

The monotone homogeneity model (MHM—also known as the unidimensional monotone latent variable model) is a nonparametric IRT formulation that provides the underpinning for partitioning a collection of dichotomous items to form scales. Ellis (Psychometrika 79:303–316, 2014, doi: 10.1007/s11336-013-9341-5 ) has recently derived inequalities that are implied by the MHM, yet require only the bivariate (inter-item) correlations. In this paper, we incorporate these inequalities within a mathematical programming formulation for partitioning a set of dichotomous scale items. The objective criterion of the partitioning model is to produce clusters of maximum cardinality. The formulation is a binary integer linear program that can be solved exactly using commercial mathematical programming software. However, we have also developed a standalone branch-and-bound algorithm that produces globally optimal solutions. Simulation results and a numerical example are provided to demonstrate the proposed method.

Tài liệu tham khảo

Bacci, S., Bartolucci, F., & Gnaldi, M. (2014). A class of multidimensional latent class IRT models for ordinal polytomous item responses. Communication in Statistics, 43, 787–800. Balas, E. (1965). An additive algorithm for solving linear programs with zero-one variables. Operations Research, 13, 517–546. Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141–157. Bartolucci, F., Bacci, S., & Gnaldi, M. (2014). MultiLCIRT: An R package for multidimensional latent class item response models. Computational Statistics and Data Analysis, 71, 971–985. Bartolucci, F., Montanari, G. E., & Pandolfi, S. (2012). Dimensionality of the latent structure and item selection via latent class multidimensional IRT models. Psychometrika, 77, 782–802. Birnbaum, A. (1968). Some latent trait models and their uses in inferring an examinee’s ability. In F. M. Lord & R. M. Novick (Eds.), Statistical theories of mental test scores (pp. 397–479). Reading, MA: Addison-Wesley. Brusco, M. J., & Stahl, S. (2005). Branch-and-bound applications in combinatorial data analysis. New York, NY: Springer. Brusco, M. J., & Stahl, S. (2007). An algorithm for extracting maximum cardinality subsets with perfect dominance or anti-Robinson structures. British Journal of Mathematical and Statistical Psychology, 60, 333–351. Clapham, C. (1996). The concise Oxford dictionary of mathematics. New York, NY: Oxford University Press. D’Angelo, G. M., Luo, J., & Xiong, C. (2012). Missing data methods for partial correlations. Journal of Biometrics & Biostatistics, 3(8). doi:10.4172/2155-6180.1000155. Dean, N., & Raftery, A. E. (2010). Latent class analysis variable selection. Annals of the Institute of Statistical Mathematics, 62, 11–35. Ellis, J. (2014). An inequality for correlations in unidimensional monotone latent variable models for binary variables. Psychometrika, 79, 303–316. Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1, 3–32. Fisher, R. A. (1924). The distribution of the partial correlation coefficient. Metron, 3, 329–332. Hessen, D. J. (2005). Constant latent odds-ratios models and Mantzel–Haenszel null hypothesis. Psychometrika, 70, 497–516. Junker, B. W., & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement, 22, 211–220. Klein, G., & Aronson, J. E. (1991). Optimal clustering: A model and method. Naval Research Logistics, 38, 447–461. Land, A. H., & Doig, A. (1960). An automatic method of solving discrete programming problems. Econometrica, 28, 497–520. Loevinger, J. (1948). The technique of homogeneous tests compared with some aspects of "scale analysis" and factor analysis. Psychological Bulletin, 45, 507–530. Mokken, R. J. (1971). A theory and procedure of scale analysis. The Hauge/Berlin: Mouton/DeGruyter. Molenaar, I. W., & Sijtsma, K. (2000). User’s manual for MSP5 for Windows. Groningen: iecProGAMMA. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielsen and Lydische. Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer. Roussos, L. A., Stout, W. F., & Marden, J. I. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality. Journal of Educational Measurement, 35, 1–30. Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph No. 17. Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage. Straat, J. H., Van der Ark, L. A., & Sijtsma, K. (2013). Comparing optimization algorithms for item selection in Mokken scale analysis. Journal of Classification, 30, 75–99. Steinley, D., & Brusco, M. J. (2008). Selection of variables in cluster analysis: An empirical comparison of eight procedures. Psychometrika, 73, 125–144. Van Abswoude, A. A. H., Van der Ark, L. A., & Sijtsma, K. (2004). A comparative study of test data dimensionality assessment procedures under nonparametric IRT models. Applied Psychological Measurement, 28, 3–24. Van der Ark, L. A. (2007). Mokken scale analysis in R (version 2.4). Journal of Statistical Software, 20, 1–19. Van der Ark, L. A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical Software, 48, 1–27. Van der Ark, L. A., Croon, M. A., & Sijtsma, K. (2008). Mokken scale analysis for dichotomous items using marginal models. Psychometrika, 73, 183–208. Van der Ark, L. A., & Sijtsma, K. (2005). The effect of missing data imputation on Mokken scale analysis. In L. A. Van der Ark, M. A. Croon, & K. Sijtsma (Eds.), New developments in categorical data analysis for the social and behavioral sciences (pp. 147–166). Mahwah, NJ: Lawrence Erlbaum. Verweij, A. C., Sijtsma, K., & Koops, W. (1996). A Mokken scale for transitive reasoning suited for longitudinal research. International Journal of Behavioral Development, 23, 241–264. Zhang, J., & Stout, W. F. (1999). The theoretical DETECT index of dimensionality and its application to simple structure. Psychometrika, 64, 213–249.