An Elliptic Problem Involving Large Advection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aghajani, A., Cowan, C., Lui, S.H.: Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball. J. Differ. Equ. 264(4), 2865–2896 (2018)
Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems, p 4. Cambridge University Press, Cambridge (2007)
Berestycki, H., Hamel, F., Nadirashvili, N.: The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena. Comm. Math. Phys. 253, 451–480 (2005)
Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I - Periodic framework. J. Eur. Math. Soc. 7, 173–213 (2005)
Berestycki, H., Kiselev, A., Novikov, A., Ryzhik, L.: The explosion problem in a flow. JAMA 110, 31–65 (2010)
Brezis, H., Turner, R.E.L.: On a class of superlinear elliptic problems. Comm. Partial Differ. Equ. 2, 601–614 (1977)
Chen, Z., Lin, C.-S., Zou, W.: Monotonicity and nonexistence results to cooperative systems in the half space. J. Funct. Anal. 266, 1088–1105 (2014)
Coron, J.M.: Topologie et cas limite des injections de Sobolev. C.R. Acad. Sc. Paris, 299, Series I, 209–212 (1984)
Cowan, C.: Optimal Hardy inequalities for general elliptic operators with improvements. Commun. Pure Appl. Anal. 109–140 (2009)
Dancer, E.N.: Some notes on the method of moving planes. Bull. Austral. Math. Soc. 46(3), 425–434 (1992)
Dancer, E.N.: Stable solutions on $\mathbb {R}^{n}$ and the primary branch of some non-self-adjoint convex problems. Differ. Integ. Equ. 17, 961–970 (2004)
Dancer, E.N., Farina, A.: On the classification of solutions of −Δu = eu on $\mathbb {R}^{N}$: stability outside a compact set and applications. Proc. Amer. Math. Soc. 137, 1333–1338 (2009)
de Figueiredo, D.G., Lions, P. -L., Nussbaum, R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math Pures Appl. 61, 41–63 (1982)
del Pino, M., Dolbeault, J., Musso, M.: A phase plane analysis of the multi-bubbling phenomenon in some slightly supercritical equations. Monatsh. Math. 142(1-2), 57–79 (2004)
del Pino, M., Dolbeault, J., Musso, M.: Bubble-tower radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differ. Equ. 193(2), 280–306 (2003)
del Pino, M., Felmer, P., Musso, M.: Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries. Bull. London Math. Soc. 35(4), 513–521 (2003)
del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var Partial Differ. Equ. 16(2), 113–145 (2003)
del Pino, M., Wei, J.: Supercritical elliptic problems in domains with small holes. Ann. Non linearie, Annoles de l’Institut H. Poincare 24(4), 507–520 (2007)
Dupaigne, L.: Stable solutions of elliptic partial differential equations. Chapman and Hall/CRC Monographs and surveys in Pure and applied mathematics 143 (2011)
Dupaigne, L., Sirakov, B., Souplet, P.: A Liouville-Type Theorem for the Lane–Emden Equation in a. Half-space International Mathematics Research Notices (2021)
Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains of rN. J. Math. Pures Appl. 87, 537–561 (2007)
Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differ. Equ. 6, 883–901 (1981)
Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl. Math. 34, 525–598 (1981)
Kirsch, S., El Smaily, M.: The speed of propagation for KPP reaction-diffusion equations within large drift. Adv. Differ. Equ. 16(3-4), 361–400 (2011)
Kirsch, S., El Smaily, M.: Asymptotics of the KPP minimal speed within large drift. Comptes Rendus de l’académie des Sciences 348(15-16), 857–861 (2010)
Kirsch, S., El Smaily, M.: Front speed enhancement by incompressible flows in three or higher dimensions. Arch. Ration. Mech. Anal. 213(1), 327–354 (2014)
McGough, J., Mortensen, J.: Pohozaev obstructions on non-starlike domains. Calc. Var. Partial Differ. Equ. 18(2), 189–205 (2003)
McGough, J., Mortensen, J., Rickett, C., Stubbendieck, G.: Domain geometry and the Pohozaev identity. Electron. J. Differ. Equ. 32, 16 (2005)
Mawhin, J.: Leray-schauder degree: a half century of extensions and applications. Topological Methods Nonlinear Anal. 14(2), 195–228 (1999)
Passaseo, D.: Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains. J. Funct. Anal. 114(1), 97–105 (1993)
Pohozaev, S.: Eigenfunctions of the equation −Δu + λf(u) = 0. Soviet Math. Doklady 6, 1408–1411 (1965)
Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems. Duke. Math. J. 139(3), 555–579 (2007)
Quittner, P., Souplet, P.H.: A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces. Arch. Ration. Mech Anal. 174, 49–81 (2004)
Reichel, W., Weth, T.: Existence of solutions to nonlinear subcritical higher order elliptic Dirichlet problems. J. Differ. Equ. 248, 1866–1878 (2010)
Schaaf, R.: Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry. Adv. Differ. Equ. 5(10–12), 1201–1220 (2000)
Schmitt, K.: Positive solutions of semilinear elliptic boundary value problems, Topological methods in differential equations and inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, pp. 447–500. Kluwer Academic Publishers, Dordrecht (1995)
Souplet, P.: Optimal regularity conditions for elliptic problems via $l^{p}_{\delta }$-spaces. Duke. Math. J. 127, 175–192 (2005)
Struwe, M.: Variational Methods – Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (1990)