An Elliptic Problem Involving Large Advection

Asadollah Aghajani1, Craig Cowan2
1School of Mathematics, Iran University of Science and Technology, Tehran, Iran
2Department of Mathematics, University of Manitoba, Winnipeg, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aghajani, A., Cowan, C., Lui, S.H.: Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball. J. Differ. Equ. 264(4), 2865–2896 (2018)

Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems, p 4. Cambridge University Press, Cambridge (2007)

Berestycki, H., Hamel, F., Nadirashvili, N.: The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena. Comm. Math. Phys. 253, 451–480 (2005)

Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I - Periodic framework. J. Eur. Math. Soc. 7, 173–213 (2005)

Berestycki, H., Kiselev, A., Novikov, A., Ryzhik, L.: The explosion problem in a flow. JAMA 110, 31–65 (2010)

Brezis, H., Turner, R.E.L.: On a class of superlinear elliptic problems. Comm. Partial Differ. Equ. 2, 601–614 (1977)

Chen, Z., Lin, C.-S., Zou, W.: Monotonicity and nonexistence results to cooperative systems in the half space. J. Funct. Anal. 266, 1088–1105 (2014)

Coron, J.M.: Topologie et cas limite des injections de Sobolev. C.R. Acad. Sc. Paris, 299, Series I, 209–212 (1984)

Cowan, C.: Optimal Hardy inequalities for general elliptic operators with improvements. Commun. Pure Appl. Anal. 109–140 (2009)

Dancer, E.N.: Some notes on the method of moving planes. Bull. Austral. Math. Soc. 46(3), 425–434 (1992)

Dancer, E.N.: Stable solutions on $\mathbb {R}^{n}$ and the primary branch of some non-self-adjoint convex problems. Differ. Integ. Equ. 17, 961–970 (2004)

Dancer, E.N., Farina, A.: On the classification of solutions of −Δu = eu on $\mathbb {R}^{N}$: stability outside a compact set and applications. Proc. Amer. Math. Soc. 137, 1333–1338 (2009)

de Figueiredo, D.G., Lions, P. -L., Nussbaum, R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math Pures Appl. 61, 41–63 (1982)

del Pino, M., Dolbeault, J., Musso, M.: A phase plane analysis of the multi-bubbling phenomenon in some slightly supercritical equations. Monatsh. Math. 142(1-2), 57–79 (2004)

del Pino, M., Dolbeault, J., Musso, M.: Bubble-tower radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differ. Equ. 193(2), 280–306 (2003)

del Pino, M., Felmer, P., Musso, M.: Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries. Bull. London Math. Soc. 35(4), 513–521 (2003)

del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var Partial Differ. Equ. 16(2), 113–145 (2003)

del Pino, M., Wei, J.: Supercritical elliptic problems in domains with small holes. Ann. Non linearie, Annoles de l’Institut H. Poincare 24(4), 507–520 (2007)

Dupaigne, L.: Stable solutions of elliptic partial differential equations. Chapman and Hall/CRC Monographs and surveys in Pure and applied mathematics 143 (2011)

Dupaigne, L., Sirakov, B., Souplet, P.: A Liouville-Type Theorem for the Lane–Emden Equation in a. Half-space International Mathematics Research Notices (2021)

Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains of rN. J. Math. Pures Appl. 87, 537–561 (2007)

Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differ. Equ. 6, 883–901 (1981)

Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl. Math. 34, 525–598 (1981)

Kirsch, S., El Smaily, M.: The speed of propagation for KPP reaction-diffusion equations within large drift. Adv. Differ. Equ. 16(3-4), 361–400 (2011)

Kirsch, S., El Smaily, M.: Asymptotics of the KPP minimal speed within large drift. Comptes Rendus de l’académie des Sciences 348(15-16), 857–861 (2010)

Kirsch, S., El Smaily, M.: Front speed enhancement by incompressible flows in three or higher dimensions. Arch. Ration. Mech. Anal. 213(1), 327–354 (2014)

McGough, J., Mortensen, J.: Pohozaev obstructions on non-starlike domains. Calc. Var. Partial Differ. Equ. 18(2), 189–205 (2003)

McGough, J., Mortensen, J., Rickett, C., Stubbendieck, G.: Domain geometry and the Pohozaev identity. Electron. J. Differ. Equ. 32, 16 (2005)

Mawhin, J.: Leray-schauder degree: a half century of extensions and applications. Topological Methods Nonlinear Anal. 14(2), 195–228 (1999)

Passaseo, D.: Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains. J. Funct. Anal. 114(1), 97–105 (1993)

Pohozaev, S.: Eigenfunctions of the equation −Δu + λf(u) = 0. Soviet Math. Doklady 6, 1408–1411 (1965)

Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems. Duke. Math. J. 139(3), 555–579 (2007)

Quittner, P., Souplet, P.H.: A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces. Arch. Ration. Mech Anal. 174, 49–81 (2004)

Reichel, W., Weth, T.: Existence of solutions to nonlinear subcritical higher order elliptic Dirichlet problems. J. Differ. Equ. 248, 1866–1878 (2010)

Ryzhik, L., Zlatos, A.: KPP Pulsating front speed-up by flows. Comm. Math. Sci. 5, 575–593 (2007)

Schaaf, R.: Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry. Adv. Differ. Equ. 5(10–12), 1201–1220 (2000)

Schmitt, K.: Positive solutions of semilinear elliptic boundary value problems, Topological methods in differential equations and inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, pp. 447–500. Kluwer Academic Publishers, Dordrecht (1995)

Souplet, P.: Optimal regularity conditions for elliptic problems via $l^{p}_{\delta }$-spaces. Duke. Math. J. 127, 175–192 (2005)

Struwe, M.: Variational Methods – Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (1990)

Zlatos, A.: A.: Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows. A.ch. Ration. Mech. Anal. 195(2), 441–453 (2010)