An Efficient Approach for Outlier Detection with Imperfect Data Labels

IEEE Transactions on Knowledge and Data Engineering - Tập 26 Số 7 - Trang 1602-1616 - 2014
Bo Liu1, Yanshan Xiao2, Philip S. Yu3, Zhifeng Hao2, Longbing Cao4
1Department of Automation, Guangdong University of Technology, Guangzhou, China
2Department of Computer Science, Guangdong University of Technology, Guangzhou, China
3Department of Computer Science, University of Illinois at Chicago, Chicago IL#TAB#
4Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

akbani, 2004, Applying support vector machines to imbalanced datasets, Proc ECML, 39

10.1023/A:1012406528296

10.1145/1007730.1007733

elkan, 2001, The foundations of cost-sensitive learning, Proc IJCAI, 973

10.1007/s10115-012-0484-y

tax, 1998, Outlier detection using classifier instability, Proc Advances in Pattern Recognition, 593, 10.1007/BFb0033283

fumera, 2002, Cost-sensitive learning in support vector machines, Proc Workshop Mach Learn Meth Appl

nakhaeizadeh, 1994, Cost-sensitive pruning of decision trees, Proc ECML, 383

chan, 1998, Toward scalable learning with non-uniform class and cost distributions, Proc ACM SIGKDD Int Conf KDD, 164

10.1137/1.9781611972740.30

steinwart, 2005, A classification framework for anomaly detection, J Mach Learn Res, 6, 211

10.1145/1150402.1150459

theller, 2003, Resampling approach for anomaly detection in multispectral images, Proc SPIE, 230, 10.1117/12.487069

10.1023/B:AIRE.0000045502.10941.a9

10.1145/1541880.1541882

10.1007/s10115-010-0323-y

10.1007/s10618-008-0093-2

10.1007/s10618-008-0093-2

10.1109/ICDM.2010.56

10.1145/1497577.1497581

jordaan, 2004, Robust outlier detection using SVM regression, Proc IJCNN, 1098

10.1145/2020408.2020554

10.1109/TKDE.2009.58

tax, 1999, Support vector data description applied to machine vibration analysis, Proc ASCI, 398

10.1109/TKDE.2008.190

10.1007/s10115-009-0198-y

10.1109/TKDE.2010.67

10.1016/j.comcom.2007.03.008

10.1109/MCI.2008.919069

10.1109/TKDE.2012.99

eskin, 2000, Anomaly detection over noisy data using learned probability distributions, Proc ICML, 255

10.1145/1835804.1835939

10.1007/s10115-010-0283-2

smith, 2002, Clustering approaches for anomaly based intrusion detection, Intell Eng Syst Artificial Neural Networks, 579

10.1109/TKDE.2010.235

10.1007/978-94-015-3994-4

10.1145/342009.335388

barnett, 1994, Outliers in Statistical Data

10.1073/pnas.011404098

10.1109/FSKD.2008.244

yang, 2012, Multiple kernel learning from noisy labels by stochastic programming, Proc 29th ICML

10.1023/B:MACH.0000008084.60811.49

tax, 0, Outlier Detection Datasets

0, UCI Machine Learning Repository

10.1137/1.9781611972788.44

batistakis, 2002, Cluster validity methods: Part i, Proc ACM SIGMOD Rec, 31, 40, 10.1145/565117.565124

vapnik, 1998, Statistical Learning Theory

ling, 2003, AUC: A statistically consistent and more discriminating measure than accuracy, Proc IJCAI, 519

wu, 2009, A small sphere and large margin approach for novelty detection using training data with outliers, IEEE Trans Pattern Anal Mach Intell, 31, 2088, 10.1109/TPAMI.2009.24

10.1145/1081870.1081891