An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO

Solar Physics - Tập 292 - Trang 1-16 - 2017
I. M. Chertok1, V. V. Grechnev2, A. A. Abunin1
1Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Moscow, Russia
2Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia

Tóm tắt

In our previous articles (Chertok et al. in Solar Phys. 282, 175, 2013; Chertok et al. in Solar Phys. 290, 627, 2015), we presented a preliminary tool for the early diagnostics of the geoeffectiveness of solar eruptions based on the estimate of the total unsigned line-of-sight photospheric magnetic flux in accompanying extreme ultraviolet (EUV) arcades and dimmings. This tool was based on the analysis of eruptions observed during 1996 – 2005 with the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). Empirical relationships were obtained to estimate the probable importance of upcoming space weather disturbances caused by an eruption, which just occurred, without data on the associated coronal mass ejections. In particular, it was possible to estimate the intensity of a non-recurrent geomagnetic storm (GMS) and Forbush decrease (FD), as well as their onset and peak times. After 2010 – 2011, data on solar eruptions are obtained with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We use relatively short intervals of overlapping EIT–AIA and MDI–HMI detailed observations, and additionally, a number of large eruptions over the next five years with the 12-hour cadence EIT images to adapt the SOHO diagnostic tool to SDO data. We show that the adopted brightness thresholds select practically the same areas of arcades and dimmings from the EIT 195 Å and AIA 193 Å image, with a cross-calibration factor of 3.6 – 5.8 (5.0 – 8.2) for the AIA exposure time of 2.0 s (2.9 s). We also find that for the same photospheric areas, the MDI line-of-sight magnetic flux systematically exceeds the HMI flux by a factor of 1.4. Based on these results, the empirical diagnostic relationships obtained from SOHO data are adjusted to SDO instruments. Examples of a post-diagnostics based on SDO data are presented. As before, the tool is applicable to non-recurrent GMSs and FDs caused by nearly central eruptions from active regions, provided that the southern component of the interplanetary magnetic field near the Earth is predominantly negative, which is not predicted by this tool.

Tài liệu tham khảo

Belov, A.V.: 2009, Proc. IAU Symp. 257, 439. DOI . Belov, A., Baisultanova, L., Eroshenko, E., Mavromichalaki, H., Yanke, V., Pchelkin, V., et al.: 2005, J. Geophys. Res. 110, A09S20. DOI . Bothmer, V., Zhukov, A.: 2007, In: Bothmer, V., Daglis, I.A. (eds.) Space Weather – Physics and Effects 31. DOI . Cane, H.V.: 2000, Space Sci. Rev. 93, 55. DOI . Chertok, I.M., Grechnev, V.V.: 2005, Solar Phys. 229, 95. DOI . Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Solar Phys. 282, 175. DOI (Article I). Chertok, I.M., Abunina, M.A., Abunin, A.A., Belov, A.V., Grechnev, V.V.: 2015, Solar Phys. 290, 627. DOI (Article II). Couvidat, S., Schou, J., Hoeksema, J.T., Bogart, R.S., Bush, R.I., Duvall, T.L.: 2016, Solar Phys. 291, 1887. DOI . Démoulin, P.: 2008, Ann. Geophys. 26, 3113. DOI . Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, Solar Phys. 162, 291. DOI . Domingo, V., Fleck, B., Poland, A.I.: 1995, Solar Phys. 162, 1. DOI . Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Prog. Earth Planet. Sci. 2, 13. DOI . Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, J. Geophys. Res. 120, 9221. DOI . Gosling, J.T.: 1993, J. Geophys. Res. 113, 18937. DOI . Grechnev, V.V., Lesovoi, S.V., Smolkov, G.Y., Krissinel, B.B., Zandanov, V.G., Altyntsev, A.T., Kardapolova, N.N., Sergeev, R.Y., Uralov, A.M., Maksimov, V.P., Lubyshev, B.I.: 2003, Solar Phys. 216, 239. DOI . Hanaoka, Y., Shibasaki, K., Nishio, M., Enome, S., Nakajima, H., Takano, T., Torii, C., Sekiguchi, H., Bushimata, T., Kawashima, S., Shinohara, N., Irimajiri, Y., Koshiishi, H., Kosugi, T., Shiomi, Y., Sawa, M., Kai, K.: 1994, Proc. Kofu Symp. 35. Harra, L.K., Mandrini, C.H., Dasso, S., Gulisano, A.M., Steed, K., Imada, S., et al.: 2011, Solar Phys. 268, 213. DOI . Hudson, H.S., Cliver, E.W.: 2001, J. Geophys. Res. 106, 25199. DOI . Kahler, S.: 1977, Astrophys. J. 214, 891. DOI . Kochanov, A.A., Anfinogentov, S.A., Prosovetsky, D.V., Rudenko, G.V., Grechnev, V.V.: 2013, Publ. Astron. Soc. Japan 65. DOI . Krymskii, G.F., Kuz’min, A.I., Krivoshapkin, P.A., Samsonov, I.S., Skripin, G.V., Transkij, I.A., Chirkov, N.P.: 1981, Kosmicheskie luchi i solnechnyi veter (Cosmic Rays and Solar Wind), Nauka, Novosibirsk. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17. DOI . Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, T.L., et al.: 2012, Solar Phys. 279, 295. DOI . Mandrini, C.H., Nakwacki, M.S., Attrill, G., van Driel-Gesztelyi, L., Dasso, S., Démoulin, P.: 2009, In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliospheric Processes, IAU Symp. 257, 265. DOI . Miklenic, C.H., Veronig, A.M., Vršnak, B.: 2009, Astron. Astrophys. 499, 893. DOI . Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, Solar Phys. 275, 3. DOI . Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, Astrophys. J. 659, 758. DOI . Reinard, A.A., Biesecker, D.A.: 2008, Astrophys. J. 674, 576. DOI . Reinard, A.A., Biesecker, D.A.: 2009, Astrophys. J. 705, 914. DOI . Richardson, I.G., Cane, H.V.: 2011, Solar Phys. 270, 609. DOI . Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., et al.: 2014, Solar Phys. 289, 769. DOI . Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, Solar Phys. 162, 129. DOI . Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, Solar Phys. 275, 207. DOI . Sterling, A.C., Hudson, H.S., Thompson, B.J., Zarro, D.: 2000, Astrophys. J. 532, 628. DOI . Svalgaard, L., Sun, X.: 2016. http://hmi.stanford.edu/hminuggets/?p=1510 . Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, Geophys. Res. Lett. 25, 2465. DOI . Tripathi, D., Bothmer, V., Cremades, H.: 2004, Astron. Astrophys. 422, 337. DOI . Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Myshyakov, I.I., Chertok, I.M., Filippov, B.P., Slemzin, V.A.: 2014, Solar Phys. 289, 3747. DOI . Watson, F.T., Penn, M.J., Livingston, W.: 2014, Astrophys. J. 787, 22. DOI . Yashiro, S., Gopalswamy, N., Mäkelä, P., Akiyama, S.: 2013, Solar Phys. 284, 5. DOI .