An Automatic Detection of Blood Vessel in Retinal Images Using Convolution Neural Network for Diabetic Retinopathy Detection

Pattern Recognition and Image Analysis - Tập 29 Số 3 - Trang 533-545 - 2019
Chandrasekaran Raja1, L. Balaji2
1Department of ECE, Koneru Lakshamaiah Education Foundation, Vaddeswaram, India
2Easwari Engineering College, Chennai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. S. Biyani and B. M. Patre, “Algorithms for red lesion detection in Diabetic Retinopathy: A review,” Biomed. Pharmacother. 107, 681-688 (2018).

M. U. Akram, S. Khalid, and S. A. Khan, “Identification and classification of microaneurysms for early detection of diabetic retinopathy,” Pattern Recogn. 46 (1), 107–116 (2013).

B. Antal and A. Hajdu, “An ensemble-based system for microaneurysm detection and diabetic retinopathy grading,” IEEE Trans. Biomed. Eng. 59 (6), 1720–1726 (2012).

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15 (6), 1929–1958 (2014).

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proc. 27th Int. Conf. on Machine Learning (ICML’10) (Haifa, Israel, 2010), pp. 807–814.

H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional neural networks for diabetic retinopathy,” Procedia Comput. Sci. 90, 200–205 (2016).

Q. Liu, B. Zou, J. Chen, W. Ke, K. Yue, Z. Chen, and G. Zhao, “A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images,” Comput. Med. Imaging Graphics 55, 78–86 (2017).

H. Aguirre-Ramos, J. G. Avina-Cervantes, I. Cruz-Aceves, J. Ruiz-Pinales, and S. Ledesma, “Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and Expectation Maximization,” Appl. Math. Comput. 339, 568–587 (2018).

Z. Jiang, H. Zhang, Y. Wang, and S.-B. Ko, “Retinal blood vessel segmentation using fully convolutional network with transfer learning,” Comput. Med. Imaging Graphics 68, 1–15 (2018).

M. E. Gegundez-Arias, D. Marin, B. Ponte, F. Alvarez, J. Garrido, C. Ortega, M. J. Vasallo, and J. M. Bravo, “A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis,” Comput. Biol. Med. 88, 100–109 (2017).

R. Rosas-Romero, J. Martínez-Carballido, J. Hernández-Capistrán, and L. J. Uribe-Valencia, “A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images,” Comput. Med. Imaging Graphics 44, 41–53 (2015).

R. Gargeya and T. Leng, “Automated identification of diabetic retinopathy using deep learning,” Ophthalmol. 124 (7), 962–969 (2017).

G. Quellec, K. Charrière, Y. Boudi, B. Cochener, and M. Lamard, “Deep image mining for diabetic retinopathy screening,” Med. Image Anal. 39, 178–193 (2017).

P. Cao, F. Ren, C. Wan, J. Yang, and O. Zaiane, “Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis,” Comput. Med. Imaging Graphics 69, 112–124 (2018).

K. Adem, “Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks,” Expert Syst. Appl. 114, 289–295 (2018).

Z. Julian, J. M. Buhmann, and D. Mahapatra, “Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation,” Comput. Med. Imaging Graphics 55, 28–41 (2017).