An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology

IEEE Transactions on Neural Systems and Rehabilitation Engineering - Tập 25 Số 12 - Trang 2336-2346 - 2017
Elham Dolatabadi1, Babak Taati1, Alex Mihailidis1
1Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1177/1420326X14522670

10.1016/j.imavis.2008.04.021

10.1109/SACI.2011.5873039

garcia, 2014, Assessing the Kinect’s capabilities to perform a time-based clinical test for fall risk assessment in older people, Computers in Entertainment, 100

10.1109/EMBC.2012.6346340

10.1016/j.medengphy.2016.06.015

pavlovi?, 2000, Learning switching linear models of human motion, Proc NIPS, 2, 4

10.1016/j.gaitpost.2008.07.004

10.1007/s13534-015-0179-x

10.3390/s150101417

10.1016/j.eswa.2004.12.023

wettschereck, 1994, A study of distance-based machine learning algorithms

10.1109/TSMC.1976.5408784

10.1145/1143844.1143909

stone, 2011, Evaluation of an inexpensive depth camera for in-home gait assessment, J Ambient Intell Smart Environ, 3, 349, 10.3233/AIS-2011-0124

10.1109/ICCV.2005.248

10.1016/j.gaitpost.2012.03.033

10.1109/TIP.2008.919359

10.1109/JBHI.2016.2633000

10.1109/JSEN.2013.2296509

10.1186/1471-2105-7-91

10.1023/A:1009982220290

10.14778/1454159.1454226

10.3109/03091908309018174

10.1016/S1474-4422(06)70678-0

10.1109/MEMB.2003.1213622

10.1109/TBME.2007.912428

carollo, 2004, Gait pattern classification in children with cerebral palsy: Results from a 12-state hidden Markov model created with a large training set, Gait Posture, 20, 4s

10.4218/etrij.11.1510.0068

sutherland, 1993, Common gait abnormalities of the knee in cerebral palsy, Clinical Orthopaedics and Related Research, 139

10.1109/CCE.2012.6315918

10.1177/1545968314529475

10.1145/2370216.2370444

10.1016/S0966-6362(99)90401-0

maron, 1998, Multiple-instance learning for natural scene classification, Proc ICML, 98, 341

kalekar, 2004, Time series forecasting using holt-winters exponential smoothing, Kanwal Rekhi School of Information Technology

10.1161/STROKEAHA.106.475921

lawrence, 2007, Learning for larger datasets with the Gaussian process latent variable model, Proc Int Conf Artif Intell Statist, 243

10.1109/3DIMPVT.2012.34

10.1109/EMBC.2016.7592132

arauzo-azofra, 2004, A feature set measure based on relief, Proc 5th Int Conf Recent Adv Soft Comput, 104

10.1016/B978-1-55860-247-2.50037-1

10.1682/JRRD.2013.12.0263

hondori, 2014, A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation, J Med Eng, 2014

10.1007/11744085_28

10.1016/j.jamda.2012.06.010

luštrek, 2009, Fall detection and activity recognition with machine learning, Informatica, 33, 197

salzman, 2010, Gait and balance disorders in older adults, Amer Family Phys, 82, 61

10.1212/WNL.43.2.268

10.3390/s120202255

10.1109/TBME.2009.2036732

10.1109/IEMBS.2004.1403195

10.1016/j.gaitpost.2003.10.002

10.1093/ptj/71.6.465

10.1093/ptj/65.7.1027

10.1016/S0966-6362(00)00095-3

10.1109/TBME.2004.827933

10.1109/TBME.2005.845241

10.1109/TITB.2009.2022927

murray, 1967, Gait as a total pattern of movement: Including a bibliography on gait, Amer J Phys Med Rehabil, 46, 290

10.3923/jas.2012.180.185

10.1145/1015706.1015755

lawrence, 2004, Gaussian process latent variable models for visualisation of high dimensional data, Advances in neural information processing systems, 16, 329

10.1145/1273496.1273613

moon, 2006, Impact of dynamics on subspace embedding and tracking of sequences, Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 1, 198

10.1109/CVPR.2005.61

10.1109/WMVC.2008.4544064

10.1109/CVPR.2006.15

10.1109/TPAMI.2007.1167