An Asymptotic Expansion for Bloch Functions on Riemann Surfaces of Infinite Genus and Almost Periodicity of the Kadomcev–Petviashvilli Flow

Springer Science and Business Media LLC - Tập 2 Số 3 - Trang 245-278 - 1999
Merkl, Franz1
1Courant Institute of Mathematical Sciences, New York, U.S.A.

Tóm tắt

This article describes the solution of the Kadomcev–Petviashvilli equation with C10 real periodic initial data in terms of an asymptotic expansion of Bloch functions. The Bloch functions are parametrized by the spectral variety of a heat equation (heat curves) with an external potential. The mentioned spectral variety is a Riemann surface of in general infinite genus; the Kadomcev–Petviashvilli flow is represented by a one-parameter-subgroup in the real part of the Jacobi variety of this Riemann surface. It is shown that the KP-I flow with these initial data propagates almost periodically.

Tài liệu tham khảo

citation_journal_title=Geom. Funct. Anal.; citation_title=On the Cauchy Problem for the Kadomcev–Petviashvili equation; citation_author=J. Bourgain; citation_volume=3; citation_publication_date=1993; citation_pages=315-341; citation_id=CR1 Feldman, J., Knörrer, H., and Trubowitz, E.: Riemann surfaces of infinite genus I–IV, ETH Preprint, Zürich, 1994. Feldman, J., Knörrer, H., and Trubowitz, E.: Infinite genus Riemann surfaces, In: J. Carell and R. Murty (eds), Canadian Mathematical Society 1945–1995, Volume 3, 1996, pp. 91–111. citation_journal_title=J. Funct. Anal.; citation_title=Explicit construction of solutions of the modified Kadomcev–Petviashvili equation; citation_author=F. Gesztesy, H. Holden, E. Saab, B. Simon; citation_volume=98; citation_issue=1; citation_publication_date=1991; citation_pages=211-228; citation_id=CR4 citation_journal_title=Rep. Math. Phys.; citation_title=Rational KP and mKP-solutions in Wronskian form; citation_author=F. Gesztesy, W. Schweiger; citation_volume=30; citation_issue=2; citation_publication_date=1991; citation_pages=205-222; citation_id=CR5 citation_journal_title=Differential Integral Equations; citation_title=On the (modified) Kadomcev–Petviashvili hierarchy; citation_author=F. Gesztesy, K. Unterkofler; citation_volume=8; citation_issue=4; citation_publication_date=1995; citation_pages=797-812; citation_id=CR6 citation_journal_title=Russian Math. Surveys; citation_title=Spectral theory of two-dimensional periodic operators and its applications; citation_author=I. M. Krichever; citation_volume=44; citation_issue=2; citation_publication_date=1989; citation_pages=145-225; citation_id=CR7 citation_title=Integrable systems and algebraic curves; citation_inbook_title=Global Analysis; citation_publication_date=1978; citation_pages=83-200; citation_id=CR8; citation_author=H. P. McKean; citation_publisher=Springer citation_journal_title=Bull. Amer. Math. Soc.; citation_title=Hill’s surfaces and their theta functions; citation_author=H. P. McKean, E. Trubowitz; citation_volume=84; citation_issue=6; citation_publication_date=1978; citation_pages=1042-1085; citation_id=CR9 citation_journal_title=Comm. Pure Appl. Math.; citation_title=Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points; citation_author=H. P. McKean, E. Trubowitz; citation_volume=29; citation_publication_date=1976; citation_pages=143-226; citation_id=CR10 citation_journal_title=Invent. Math.; citation_title=The spectrum of Hill’s equation; citation_author=H. P. McKean, P. van Moerbeke; citation_volume=30; citation_publication_date=1975; citation_pages=217-274; citation_id=CR11 Merkl, F.: A Riemann–Roch theorem for infinite genus Riemann surfaces, submitted to Invent. Math. (1999). Merkl, F.: A Riemann–Roch theorem for infinite genus riemann surfaces with applications to inverse spectral theory, Dissertation ETH Zürich No. 12469, 1997. Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations, In: Proceedings of the International Symposium on Algebraic Geometry, Kyoto, 1977, pp. 115–153.