An Alternative Approach to Study Photo-catalytic Behavior of TiO2 Using Synchrotron-Based Advanced Spectroscopic Techniques

Journal of Materials Engineering and Performance - Tập 32 - Trang 10391-10401 - 2023
A. Kumari1, M. Zaman1, A. Kumar1, V. R. Singh1, A. Ghosh2, S. K. Sahoo2, A. Rahaman3, Satish K. Mandal4,5, Satyaban Bhunia4,5
1Department of Physics, Central University of South Bihar, Gaya, India
2Department of Metallurgical & Materials Engineering, NIT, Rourkela, India
3Centre for Materials Characterization & Testing, School of Mechanical Engineering, VIT, Vellore, India
4Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata, India
5Department of Atomic Energy, Raja Ramanna Centre for Advanced Technology, Indore, India

Tóm tắt

Titanium oxide (TiO2)-based nanoparticles have grabbed immense attention for its application as photo-catalyst in numerous fields of research like photo-catalytic treatment of wastewater, water splitting and photo-catalytic degradation of organic pollutants, etc. The current study utilizes synchrotron-based x-ray diffraction (XRD), energy-dispersive Spectroscopy (EDX), high-resolution scanning electron microscopy (HR-SEM), UV–Vis spectroscopy as well as x-ray photo-emission spectroscopy (XPS) and valence band spectroscopy (VBS) technique to unveil the structural, morphological, optical, electronic and magnetic characteristics of TiO2 nanoparticles. The XRD pattern clearly shows the dimorphic nature of TiO2, with coexisting anatase and rutile phases. The Williamson–Hall method suggested that the macro-strain values for the TiO2 sample are ~ 5.201 × 10− 4. The band gap energies and the excitation wavelength of TiO2 nanoparticles were displayed to be around ~ 3.28 eV and < 400 nm, which suggests that the absorption region is confined to the ultraviolet region. XPS spectra indicated that the Ti existed in dominating 4 + state along with a shoulder peak signifying the 3 + state originating due to the induced oxygen deficiency defect in the given specimen. To get a detailed comprehensive idea of phenomena of photo-catalysis, the most sophisticated tool VBS technique was utilized in current investigation. These measurements suggest that the hybridized state of Ti-3d and O-2p emerges which causes the photo-catalytic activity. To confirm the presence of oxygen vacancies in the TiO2 sample, magnetization measurements were carried out, which demonstrated that TiO2 exhibits super-paramagnetic/ferromagnetic behavior at room temperature.

Tài liệu tham khảo

Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, and Z. Yuan, An Overview of Chlorophenols as Contaminants and Their Removal from Wastewater by Adsorption: A Review, J. Environ. Manag., 2019, 241, p 59–75. W. Xiao, X. Jiang, X. Liu, W. Zhou, Z.N. Garba, I. Lawan, L. Wang, and Z. Yuan, Adsorption of Organic Dyes from Wastewater by Metal-Doped Porous Carbon Materials, J. Clean. Prod., 2021, 284, p 124773. Y. Chen, N. Li, Y. Zhang, and L. Zhang, Novel Low-Cost Fenton Like Layered Fe-Titanate Catalyst: Preparation, Characterization and Application for Degradation of Organic Colorants, J. Colloid Interface Sci., 2014, 422, p 9–15. M.L. Rache, A.R. Garcia, H.R. Zea, M.T. Silva, L.M. Madeira, and J.H. Ramirez, Azo-Dye Orange II Degradation by the Heterogeneous Fenton-Like Process using a Zeolite Y-Fe Catalyst-Kinetics with A Model Based on The Fermi’s Equation, Appl. Catal. B, 2014, 146, p 192–200. K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, and T. Xiao, Removal of Fluoride From Industrial Wastewater by Using Different Adsorbents: A Review, Sci. Total Environ., 2021, 773, p 145535. S.M. Hossain, H. Park, H.-J. Kang, J.B. Kim, L. Tijing, I. Rhee, Y.-S. Jun, H.K. Shon, and J.-H. Kim, Preparation and Characterization of Photoactive Anatase TiO2 from Algae Bloomed Surface Water, Catalysts, 2020, 10, p 452. B.C. Yadav, A. Yadav, T. Shukla, and S. Singh, Solid-State Titania-Based Gas Sensor for Liquefied Petroleum Gas Detection at Room Temperature, Bull. Mater. Sci., 2011, 34, p 1639–1644. B.C. Yadava, A. Yadav, T. Shukla, and S. Singh, Experimental Investigations on Solid State Conductivity of Cobalt-Zincate Nanocomposite for Liquefied Petroleum Gas Sensing, Sens. Lett., 2009, 7, p 1119–1123. A.K. Vishwakarma, N.K. Yadav, and L. Yadava, Detection of Toluene Gas Using CdS TiO2 Thin Film Gas Sensor, Sens. Lett., 2019, 17, p 803–806. A.K. Vishwakarma and L. Yadava, Detection of Propanol Gas Using Titanium Dioxide-Based Thick Film, IOP Conf. Ser. Mater. Sci. Eng., 2018, 404, p 012020. S. Thanigaivel, A.K. Priya, L. Gnanasekaran, T.K.A. Hoang, S. Rajendran, and M.S. Moscoso, Sustainable Applicability and Environmental Impact of Wastewater Treatment by Emerging Nanobiotechnological Approach: Future Strategy for Efficient Removal of Contaminants and Water Purification, Sustain. Energy Technol. Assessments, 2022, 53, p 102484. Y. Lei, Y. Yang, P. Zhang, J. Zhou, J. Wu, K. Li, W. Wang, and L. Chen, Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance, Nanomaterials, 2021, 11, p 1347. A.U. Haq, M. Saeed, S.G. Khan, M. Ibrahim, Photocatalytic Applications of Titanium Dioxide (TiO2). In: Titanium Dioxide-Advances and Applications. London. 2021 K. Wang, G. Zhang, J. Li, Y. Li, and X. Wu, 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics, ACS Appl. Mater. Interfaces, 2017, 9, p 43704–43715. Z. Wang, Y. Fan, R. Wu, Y. Huo, H. Wu, F. Wang, and X. Xu, Novel Magnetic g-C3N4/α-Fe2O3/Fe3O4 Composite for the Very Effective Visible-Light-Fenton Degradation of Orange II, RSC Adv., 2018, 8, p 5180–5188. S.Q. Yu, Y.H. Ling, J. Zhang, F. Qin, and Z.J. Zhang, Efficient Photoelectrochemical Water Splitting and Impedance Analysis of WO3-x Nanoflake Electrodes, Int. J. Hydrogen Energy, 2017, 42, p 20879–20887. W. Feng, L. Lin, H. Li, B. Chi, J. Pu, and J. Li, Hydrogenated TiO2/ZnO Heterojunction Nanorod Arrays with Enhanced Performance for Photoelectrochemical Water Splitting, Int. J. Hydrogen Energy, 2017, 42, p 3938–3946. M.H. Lee, J.H. Park, H.S. Han, H.J. Song, I.S. Cho, J.H. Noh, and K.S. Hong, Nanostructured Ti-Doped Hematite (a-Fe2O3) Photoanodes for Efficient Photoelectrochemical Water Oxidation, Int. J. Hydrogen Energy, 2014, 39, p 17501–17507. A.Z. Medynska, Metal Oxide-Based Photocatalysis, Elsevier Science & Technology, Amsterdam, 2020. K. Yang, Y. Dai, and B. Huang, Review of First-Principles Studies of TiO2: Nanocluster, Bulk, and Material Interface, Catalysts, 2020, 10, p 972. A. Chanda, K. Rout, M. Vasundhara, S.R. Joshi, and J. Singh, Structural and Magnetic Study of Undoped and Cobalt Doped TiO2 Nanoparticles, RSC Adv., 2018, 8, p 10939–10947. X. Wu, Applications of Titanium Dioxide Materials. In: Titanium Dioxide-Advances and Applications. (2021) A. Fujishima, T.N. Rao, and D.A. Tryk, Titanium Dioxide Photocatalysis, J. Photochem. Photobiol. C Photochem. Rev., 2000, 1(1), p 1. R. Das, V. Ambardekar, and P.P. Bandyopadhyay, Titanium Dioxide and Its Applications in Mechanical, Electrical, Optical, and Biomedical Fields, Titanium Dioxide-Advances and Applications, London, 2021. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, and C.V. Reddy, Recent Progress in Metal-Doped TiO2, Non-Metal Doped/Codoped TiO2 and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis, Int. J. Hydrogen Energy, 2020, 45, p 7764–7778. W. Huang, R. Lin, W. Chen, Y. Wang, and H. Yuzhu, High Room-Temperature Magnetization in Co-doped TiO2 Nanoparticles Promoted by Vacuum Annealing for Different Durations, J. Semicond., 2021, 42, p 072501. E.K. Barimah, R.P. Jones, A. Salimian, H. Upadhyay, A. Hasnath, and G. Jose, Phase Evolution, Morphological, Optical and Electrical Properties of Femtosecond Pulsed Laser Deposited TiO2 thin Films, Sci. Rep., 2020, 10, p 10144. H. Eidsvåg, S. Bentouba, P. Vajeeston, S. Yohi, and D. Velauthapillai, TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review, Molecules, 2021, 26, p 1687. A.D. Paola, M. Bellardita, and L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst, Catalysts, 2013, 3(1), p 36. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances, Chem. Soc. Rev., 2014, 43, p 5234–5244. R. Jaiswal, N. Patel, D.C. Kothari, and A. Miotello, Improved Visible Light Photocatalytic Activity of TiO2 Co-Doped with Vanadium and Nitrogen, Appl. Catal B, 2012, 126, p 47–54. N. Hong, J. Sakai, N. Poirot, and V. Brizé, Room-Temperature Ferromagnetism Observed in Undoped Semiconducting and Insulating Oxide Thin Films, Phys. Rev. B, 2006, 73, p 132404. L.C.J. Pereira, M.R. Nunes, O.C. Monteiro, and A.J. Silvestre, Magnetic Properties of Co-Doped TiO2 Anatase Nanopowders, Appl. Phys. Lett., 2008, 93, p 222502. J. Tian, H. Gao, H. Deng, L. Sun, H. Kong, P. Yang, and J. Chu, Structural, Magnetic and Optical Properties of Ni-doped TiO2 Thin Films Deposited on Silicon (100) Substrates by Sol-Gel Process, J. Alloy Compd., 2013, 581, p 318–323. P.R. Gomez, A. Borras, A. Barranco, J.P. Espinos, and A.R.G. Elipe, Enhanced Photoactivity in Bilayer Films with Buried Rutile-Anatase Heterojunctions, Chem. Phys. Chem., 2011, 12, p 191–196. X. Zhang, Y. Lin, D. He, J. Zhang, Z. Fan, and T. Xie, Interface Junction at Anatase/Rutile in Mixed-Phase TiO2: Formation and Photo-Generated Charge Carriers Properties, Chem. Phys. Lett., 2011, 504, p 71–75. L. Zhao, M. Han, and J. Lian, Photocatalytic Activity of TiO2 Films with Mixed Anatase and Rutile Structures Prepared by Pulsed Laser Deposition, Thin Solid Films, 2008, 516, p 3394–3398. J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, Importance of the Relationship Between Surface Phases and Photocatalytic Activity of TiO2, Angew. Chem. Int. Ed., 2008, 47, p 1766–1769. P. Deák, B. Aradi, and T. Frauenheim, Band Lineup and Charge Carrier Separation in Mixed rutile-anatase Systems, J. Phys. Chem. C, 2011, 115, p 3443–3446. D.P. Jaihindh, A. Verma, C.-C. Chen, Y.-C. Huang, C.-L. Dong, and Y.-P. Fu, Study of Oxidation States of Fe- and Co-Doped TiO2 Photocatalytic Energy Materials and Their Visible-Light-Driven Photocatalytic Behavior, Int. J. Hydrogen Energy, 2019, 44, p 30. B.D. Cullity and S.R. Stock, Elements of x-ray Diffraction, Prentice Hall, New Jersey, 2001. M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, and S. Ali, Structural, Optical, and Magnetic Study of Ni-Doped TiO2 Nanoparticles Synthesized by Sol-Gel Method, Int. Nano Lett., 2018, 8, p 1–8. F. Cummings and A. Tshaka, Opto-Electronic Properties of Anodized TiO2 Nanotube Arrays Investigated Using Electron Energy Loss Spectroscopy, Surfaces Interfaces, 2019, 17, p 100347. L. Akbar, K. Ali, M. Sajjad, A. Sattar, B. Saleem, U. Amjad, R. Rizwan, S. Sehara, W. Akram, M. Tahir, and M. Usama, Enhancement in Optical Properties of Cobalt Doped TiO2 Nanoparticles, Dig. J. Nanomater. Biostruct., 2020, 15, p 329–335. P.B. Rathod and S.A. Waghuley, Synthesis and UV-Vis Spectroscopic Study of TiO2 Nanoparticles, Int. J. Nanomanuf., 2015, 11, p 185–193. G. Beamson and D. Briggs, High Resolution Monochromated x-ray Photoelectron Spectroscopy of Organic Polymers: A Comparison Between Solid State Data for Organic Polymers and Gas Phase Data for Small Molecules, Mol. Phys., 1992, 76, p 919–936. P. Wu, Y. Ma, X. Yang, X. Peng, C. Liu, B. Li, S. Yang, J. Hou, K. Wu, and Z. Liu, Bulk and Surface Dual-Defects NiOx/B-TiO2@CdS Photocatalyst for Stable and Effective Photocatalytic Hydrogen Evolution, J. Mater. Sci., 2022, 57, p 14450–14463. V. Jovic, A.J. Rettie, V.R. Singh, J. Zhou, B. Lamoureux, C.B. Mullins, H. Bluhm, J. Laverock, and K.E. Smith, A Soft x-ray Spectroscopic Perspective of Electron Localization and Transport in Tungsten Doped Bismuth Vanadate Single Crystals, Phys. Chem. Chem. Phys., 2016, 18, p 31958–31965. Y. Yamazaki, T. Kataoka, V.R. Singh, A. Fujimori, F.H. Chang, D.J. Huang, H.J. Lin, C.T. Chen, K. Ishikawa, K. Zhang, and S. Kuroda, Effect of Co-Doping of Donor and Acceptor Impurities in the Ferromagnetic Semiconductor Zn1−xCrxTe Studied by Soft x-ray Magnetic Circular Dichroism, J. Phys. Condens. Matter, 2015, 23, p 176002. V.R. Singh, V.K. Verma, K. Ishigami, G. Shibata, A. Fujimori, T. Koide, Y. Miura, M. Shirai, T. Ishikawa, G.F. Li, and M. Yamamoto, Electronic and Magnetic Properties of off-Stoichiometric Co2MnβSi/MgO Interfaces Studied by x-ray Magnetic Circular Dichroism, J. Appl. Phys., 2015, 117, p 203901. T. Kataoka, Y. Yamazaki, V.R. Singh, Y. Sakamoto, K. Ishigami, A. Fujimori, F.H. Chang, H.J. Lin, C.T. Chen, D. Asakura, and T. Koide, X-Ray Absorption Spectroscopy and x-Ray Magnetic Circular Dichroism Studies of Transition-Metal-Co doped ZnO Nano-Particles, e-J. Surface Sci. Nanotechnol., 2012, 10, p 594–8. N.K. Singh, A. Kumar, R. Dawn, S. Jena, A. Kumari, V.R. Singh, M. Zzaman, R. Shahid, D. Panda, S.K. Sahoo, U.K. Goutam, V.K. Verma, K. Kumar, M. Khatravath, and A. Priyam, Resonance Photoemission Spectroscopic Study of Thermally Evaporated NiTiO3 Thin Films, J. Electron. Mater., 2022 https://doi.org/10.1007/s11664-022-10037-7 A. Kumari, A. Kumar, R. Dawn, J.B. Franklin, R. Vinjamuri, S.K. Sahoo, U.K. Goutam, V.K. Verma, R. Meena, A. Kandasami, S. Mahapatra, K. Kumar, A. Kumar, and V.R. Singh, Valence Band Structure of Cr Doped VO2 Thin Films: A Resonant Photoelectron Spectroscopy Study, J. Alloy. Compd., 2021, 895, p 162620. M. Kamaratos, D. Vlachos, and S.D. Foulias, The Development of Nickel Ultra-Thin Films and the Interaction with Oxygen on the SrTiO3(100) Surface Studied by Soft x-Rays Photoelectron Spectroscopy, Surf. Rev. Lett., 2004, 11, p 419–425. S. Sakamoto, L.D. Anh, P.N. Hai, G. Shibata, Y. Takeda, M. Kobayashi, Y. Takahashi, T. Koide, M. Tanaka, and A. Fujimori, Magnetization Process of the n-type Ferromagnetic Semiconductor (In, Fe )As: Be Studied by x-ray Magnetic Circular Dichroism, Phys. Rev. B., 2016, 93, p 035203. S. Sakamoto, L.D. Anh, P.N. Hai, Y. Takeda, M. Kobayashi, Y.K. Wakabayashi, Y. Nonaka, K. Ikeda, Z. Chi, Y. Wan, M. Suzuki, Y. Saitoh, H. Yamagami, M. Tanaka, and A. Fujimori, Magnetization Process of the Insulating Ferromagnetic Semiconductor (Al, Fe )Sb, Phys. Rev. B, 2020, 101, p 075204. V.K. Verma, S. Sakamoto, K. Ishikawa, V.R. Singh, K. Ishigami, G. Shibata, T. Kadono, T. Koide, S. Kuroda, and A. Fujimori, Cr Doping-Induced Ferromagnetism in the Spin-Glass Cd1−xMnxTe Studied by x-Ray Magnetic Circular Dichroism, Phys. B Cond. Matt., 2022, 642, p 414129. A. Kumari, A. Kumar, R. Dawn, J. Roy, R. Vinjamuri, D. Panda, S.K. Sahoo, V.K. Verma, S. Mahapatra, A. Rahaman, A. Ahlawat, M. Gupta, K. Kumar, A. Kandasami, and V.R. Singh, Effect of Annealing Temperature on the Structural Electronic and Magnetic Properties of Co doped TiO2 Nanoparticles: An Investigation by Synchrotron-Based Experimental Techniques, J. Alloys Compd., 2023, 933, p 167739.