An Adjacency Criterion for the Prime Graph of a Finite Simple Group
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. S. Kondratiev, “On prime graph components for finite simple groups,” Mat. Sb., 180, No.6, 787–797 (1989).
V. D. Mazurov, “Characterization of groups by arithmetic properties,” Alg. Coll., 11, No.1, 129–140 (2004).
A. V. Vasiliev, “On connection between the structure of a finite group and properties of its prime graph,” Sib. Mat. Zh., 46, No.3, 511–522 (2005).
J. Conway, R. Curtis, S. Norton, et al., Atlas of Finite Groups, Clarendon, Oxford (1985).
The GAP Group, GAP — Groups, Algorithms, and Programming, Vers. 4.4 (2004); http://www.gap-system.org.
R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., 28, Wiley, London (1972).
J. E. Humphreys, Linear Algebraic Groups, Springer, New York (1972).
A. Borel and J. de Siebental, “Les-sous-groupes fermes de rang maximum des groupes de Lie clos,” Comm. Math. Helv., 23, 200–221 (1949).
E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sb., 30, No.2, 349–462 (1952).
R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, New York (1985).
R. Carter, “Centralizers of semisimple elements in finite classical groups,” Proc. London Math. Soc., III. Ser., 42, No.1, 1–41 (1981).
R. W. Carter, “Conjugacy classes in the Weyl group,” Comp. Math., 25, No.1, 1–59 (1972).
D. Deriziotis, “Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type,” Vorlesungen aus dem Fachbereich Mathetmatic der Universitat Essen, Heft 11 (1984).
D. I. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups E 7 and E 8,” Tokyo J. Math., 6, No.1, 191–216 (1983).