An Adaptive Analytic Continuation Method for Computing the Perturbed Two-Body Problem State Transition Matrix
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atallah, A., Bani Younes, A.: Parallel integration of perturbed orbital motion. In: AIAA Scitech 2019 Forum (2019)
Atallah, A.M., Woollands, R.M., Elgohary, T.A., Junkins, J.L.: Accuracy and efficiency comparison of six numerical integrators for propagating perturbed orbits. J. Astronaut. Sci., pp. 1–28 (2019)
Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edition. American Institute of Aeronautics and Astronautics (1999)
Bogacki, P., Shampine, L.: An efficient runge-kutta (4,5) pair. Computers & Mathematics with Applications 32, 15–28 (1996). https://doi.org/10.1016/0898-1221(96)00141-1
Brouwer, D.: Hori, G.i.: Theoretical evaluation of atmospheric drag effects in the motion of an artificial satellite. The Astronomical Journal 66, 193 (1961)
Chiaradia, A.P.M., Kuga, H.K., Prado, A.F.B.d.A.: Comparison between two methods to calculate the transition matrix of orbit motion. Math. Probl. Eng., 2012 (2012)
Danby, J.: Fundamentals of Celestial Mechanics. Macmillan, New York (1962)
Dormand, J.R., Prince, P.J.: A family of embedded runge-kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)
Gim, D.W., Alfriend, K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. Journal of Guidance, Control, and Dynamics 26(6), 956–971 (2003)
Goodyear, W.H.: Completely general closed-form solution for coordinates and partial derivative of the two-body problem. The Astronomical Journal 70, 189 (1965)
Govorukhin, V.: ode87 integrator https://www.mathworks.com/matlabcentral/fileexchange/3616-ode87-integrator (2003)
Hairer, E., Nørsett, S., Wanner, G.: Solving ordinary differential equations i: Nonstiff problems. 2nd revised edn (1993)
Hatten, N., Russell, R.P.: Decoupled direct state transition matrix calculation with runge-kutta methods. J. Astronaut. Sci. 65(3), 321–354 (2018)
Hernandez, K., Elgohary, T.A., Turner, J.D., Junkins, J.L.: Analytic continuation power series solution for the two-body problem with atmospheric drag. In: Advances in Astronautical Sciences: AAS/AIAA Space Flight Mechanics Meeting, pp. 2605–2614 (2016)
Hernandez, K., Elgohary, T.A., Turner, J.D., et al.: A novel analytic continuation power series solution for the perturbed two-body problem. Celest Mech Dyn Astr 131(48). https://doi.org/10.1007/s10569-019-9926-0 (2019)
Hernandez, K., Read, J.L., Elgohary, T.A., Turner, J.D., Junkins, J.L.: Analytic power series solutions for two-body and J2–J6 trajectories and state transition models. In: Advances in Astronautical Sciences: AAS/AIAA Astrodynamics Specialist Conference (2015)
Jezewski, D., Mittleman, D.: Integrals of motion for the classical two-body problem with drag. International Journal of Non-linear Mechanics 18 (2), 119–124 (1983)
Koenig, A.W., Guffanti, T., D’Amico, S.: New state transition matrices for spacecraft relative motion in perturbed orbits. Journal of Guidance, Control, and Dynamics 40(7), 1749–1768 (2017)
Kuga, H.: Transition matrix of the elliptical keplerian motion (1986)
Ledebuhr, A.G., et al.: Autonomous, Agile, Micro-Satellites and Supporting Technologies for Use in Low-Earth Orbit Missions. Tech. rep., LLNL, US (1998)
Markley, F.: Approximate cartesian state transition matrix. The Journal of the Astronautical Sciences 34(2), 161–169 (1986)
Mavraganis, A., Michalakis, D.: The two-body problem with drag and radiation pressure. Celest. Mech. Dyn. Astron. 58(4), 393–403 (1994)
Montenbruck, O.: Numerical integration methods for orbital motion. Celest. Mech. Dyn. Astron. 53(1), 59–69 (1992)
Prince, P.J., Dormand, J.R.: High order embedded runge-kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)
Read, J.L., Younes, A.B., Macomber, B., Turner, J., Junkins, J.L.: State transition matrix for perturbed orbital motion using modified chebyshev picard iteration. J. Astronaut. Sci. 62(2), 148–167 (2015)
Schaub, H., Junkins, J.L.: Analytical mechanics of space systems. American Institute of Aeronautics and Astronautics (2005)
Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations: the Initial Value Problem. Freeman, San Francisco (1975)
Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM Journal on Scientific Computing 18(1), 1–22 (1997)
Tasif, T.H., Elgohary, T.A.: A high order analytic continuation technique for the perturbed two-body problem state transition matrix. Advances in Astronautical sciences: AAS/AIAA Space Flight Mechanics Meeting (2019)
Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation technique for the computation of the higher order state transition tensors for the perturbed two-body problem. In: AIAA Scitech 2020 Forum, pp. 0958 (2020)
Turner, J., Elgohary, T., Majji, M., Junkins, J.: High accuracy trajectory and uncertainty propagation algorithm for long-term asteroid motion prediction. In: Alfriend, K., Akella, M., Hurtado, J., Turner, J. (eds.) Adventures on the Interface of Mechanics and Control, pp 15–34 (2012)
Uyeminami, R.: Navigation filter mechanization for a Spaceborne Gps user. In: IEEE 1978 Position Location and Navigation Symposium, pp. 328–334 (1978)
Vallado, D.A.: Fundamentals of astrodynamics and applications. vol. 12 Springer Science & Business Media (2001)
Vallado, D.A., Finkleman, D.: A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut. 95, 141–165 (2014)