An Acousto-Optic Splitter–Rotator of the Plane of Polarization of Two-Color Radiation

Pleiades Publishing Ltd - Tập 68 - Trang 11-17 - 2022
V. M. Kotov1
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Fryazino Branch), Fryazino, Russia

Tóm tắt

A method for splitting two-color optical radiation into monochromatic components, whose planes of polarization rotate with the frequency of a sound wave, is proposed. The method is based on the double passage of two-color radiation through an acousto-optical (AO) modulator made of a gyrotropic crystal, as well as on the property of light to change the polarization to the mutually orthogonal one as a result of reflection of circularly polarized radiation from a mirror surface. Experiments were performed using an AO TeO2 cell designed to split two-color Ar laser radiation and confirmed the main conclusions of the theory: the monochromatic components of Ar-laser radiation with rotating polarization planes at a sound frequency of 61 MHz were obtained. The diffraction efficiency was 60%.

Tài liệu tham khảo

L. N. Magdich and V. Ya. Molchanov, Acoustooptical Devices and Their Application (Sovetskoe Radio, Moscow, 1978) [in Russian]. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Foundations of Acoustical Optics (Radio i svyaz’, Moscow, 1985) [in Russian]. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (John Wiley and Sons, New York, 1992). S. N. Antonov, Acoust. Phys. 64 (4), 432 (2018). S. N. Antonov, Acoust. Phys. 65 (5), 487 (2019). S. N. Antonov and Yu. G. Rezvov, Acoust. Phys. 67 (2), 128 (2021). S. N. Antonov, Acoust. Phys. 66 (1), 5 (2020). V. V. Proklov, Yu. G. Rezvov, and V. A. Podol’skii, Acoust. Phys. 64 (6), 687 (2018). V. V. Proklov, Yu. G. Rezvov, V. A. Podolsky, and O. D. Sivkova, Acoust. Phys. 65 (4), 385 (2019). N. V. Polikarpova, V. B. Voloshinov, and P. A. Ivanova, Acoust. Phys. 65 (6), 637 (2019). Laser Anemometry, Remote Spectroscopy and Interferometry, Ed. by M. S. Soskin (Naukova dumka, Kiev, 1985) [in Russian]. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods for Researching Fluid Flows (Sibirskoe Univ. Izd., Novosibirsk, 2003) [in Russian]. B. S. Rinkevichus, Laser Anemometry (Energiya, Moscow, 1978) [in Russian]. S. N. Antonov, V. M. Kotov, and V. N. Sotnikov, Zh. Tekh. Fiz. 61 (1), 168 (1991). V. M. Kotov and G. N. Shkerdin, Acoust. Phys. 40 (2), 281 (1994). V. M. Kotov, Opt. Spektrosk. 77 (3), 493 (1994). V. M. Kotov and G. N. Shkerdin, Acoust. Phys. 42 (5), 640 (1996). V. M. Kotov, Opt. Zh. 68 (11), 47 (2001). M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959; Nauka, Moscow, 1973). V. M. Kotov, Acoust. Phys. 65 (4), 369 (2019). V. M. Kotov, Quantum Electron. 49 (11), 1032 (2019). J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, 1957; Mir, Moscow, 1967). V. M. Kotov, Acoustical Optics. Bragg Diffraction for Multicolor Radiation (Yanus-K, Moscow, 2016) [in Russian]. V. M. Kotov, Acoust. Phys. 61 (6), 665 (2015). V. V. Nikol’skii and T. I. Nikol’skaya, Electrodynamics and Radiowaves Propagation (Nauka, Moscow, 1989) [in Russian]. F. I. Fedorov, Optics of Anisotropic Mediums (URSS, Moscow, 2004) [in Russian]. Acoustical Crystals, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian]. V. A. Kizel’ and V. I. Burkov, Crystals Gyrotropy (Nauka, Moscow, 1980) [in Russian].