An Abaqus plug-in to simulate fatigue crack growth
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lesiuk G, Smolnicki M, Rozumek D, Krechkovska H, Student O, Correia J, Mech R, de Jesus A (2020) Study of the fatigue crack growth in long-term operated mild steel under mixed-mode (I + II, I + III) loading conditions. Materials 13(1):160. https://doi.org/10.3390/ma13010160
Silva ALL, Correia JAFO, de Jesus AMP, Lesiuk G, Fernandes AA, Calçad R, Berto F (2019) Influence of fillet end geometry on fatigue behaviour of welded joints. Int J Fatigue 123:196–212. https://doi.org/10.1016/j.ijfatigue.2019.02.025
Rozumek D, Marciniak Z, Lesiuk G, Correia JA, de Jesus AMP (2018) Experimental and numerical investigation of mixed mode I+II and I+III fatigue crack growth in S355J0 steel. Int J Fatigue 113:160–170. https://doi.org/10.1016/j.ijfatigue.2018.04.005
Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. Trans ASME 85(4):528–533. https://doi.org/10.1115/1.3656900
Forman RG, Kearney VE, Engle RM (1967) Numerical analysis of crack propagation in cyclic-loaded structures. J Basic Eng 89(3):459–463. https://doi.org/10.1115/1.3609637
Schütz W (1996) A history of fatigue. Eng Fract Mech 54(2):263–300. https://doi.org/10.1016/0013-7944(95)00178-6
Correia JAFO, Blasón S, Arcari A, Calvente M, Apetre N, Moreira PMGP, de Jesus AMP, Canteli AF (2016) Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure. Theo Appl Fract Mech 85:26–36. https://doi.org/10.1016/j.tafmec.2016.08.024
Correia JAFO, de Jesus AMP, Moreira PMGP, Tavares PJS (2016) Crack closure effects on fatigue crack propagation rates: application of a proposed theoretical model. Adv Mater Sci Eng 3026745. doi: https://doi.org/10.1155/2016/3026745
Duan QY, Li JQ, Li YY, Yin YJ, Xie HM, He W (2020) A novel parameter to evaluate fatigue crack closure: Crack opening ratio. Int J Fatigue 141:105859. https://doi.org/10.1016/j.ijfatigue.2020.105859
Silva ALL, de Jesus AMP, Xavier J, Correia JAFO, Fernandes AA (2017) Combined analytical-numerical methodologies for the evaluation of mixed-mode (I + II) fatigue crack growth rates in structural steels. Eng Fract Mech 185:124–138
Malekan M, Carvalho H (2018) Analysis of a main fatigue crack interaction with multiple micro-cracks/voids in a compact tension specimen repaired by stop-hole technique. J Strain Anal Eng 53(8):648–662. https://doi.org/10.1177/0123456789123456
Nesládek M, Španiel M (2017) An Abaqus plugin for fatigue predictions. Adv Eng Softw 103:1–11. https://doi.org/10.1016/j.advengsoft.2016.10.008
ZENCRACK manual, Version 7.9.
http://gem-innovation.com/project/xfa3d/
Lani F, Wyart E, Laurent D (2013) A XFEM-based probabilistic damage tolerant approach with Morfeo/Crack for Abaqus.Simulia Benelux Users' Meeting (Conferentiecentrum Bovendonk—Hoeven, Netherlands, du 13/11/2013 au 14/11/2013)
He W, Liu J, Xie D (2014) Numerical study on fatigue crack growth at a web-stiffener of ship structural details by an objected-oriented approach in conjunction with ABAQUS. Marine Struct 35:45–69. https://doi.org/10.1016/j.marstruc.2013.12.001
Pedersen MM (2016) Multiaxial fatigue assessment of welded joints using the notch stress approach. Int J Fatigue 83(2):269–279. https://doi.org/10.1016/j.ijfatigue.2015.10.021
Malekan M, Khosravi A, St-Pierre L (2019) An Abaqus plug-in to simulate fatigue crack growth—Supporting materials. figshare. Software.
Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2:333–346. https://doi.org/10.1016/0168-874X(86)90020-X
Malekan M, Barros FB (2016) Well-conditioning global–local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics. Comput Mech 58(5):819–831. https://doi.org/10.1007/s00466-016-1318-7
Malekan M, Barros F, Pitangueira RLS (2018) Fracture analysis in plane structures with the two-scale G/XFEM method. Int J Solids Struct 155:65–80. https://doi.org/10.1016/j.ijsolstr.2018.07.009
Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S
Strouboulis T, Copps K, Babuska I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47:1401–1417. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8%3c1401::AID-NME835%3e3.0.CO;2-8
Dassault Systémes Simulia Corp., Abaqus user’s manual, version 6.14–2, Providence, Rhode Island, USA, 2014.
Erdogan F, Shi GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525. https://doi.org/10.1115/1.3656897
Pais MJ (2011) Variable amplitude fatigue analysis using surrogate models and exact XFEM reanalysis. PhD thesis, University of Florida, USA.
Tanaka K (1974) Fatigue crack propagation from a crack inclined to the cyclic tension axis. Engrg Fract Mech 6:493–507. https://doi.org/10.1016/0013-7944(74)90007-1
Richard HA, Buchholz FG, Kulmer G, Schollmann M (2003) 2D and 3D mixed mode criteria. Adv Fract Damage Mech 251:251–260. https://doi.org/10.4028/www.scientific.net/KEM.251-252.251
Tanaka K, Akiniwa Y, Kato T, Takahashi H (2005) Prediction of fatigue crack propagation path from a pre-crack under combined torsional and axial loading. Jpn Soc Mech Eng 71(703):607–614 [in Japanese]. doi: https://doi.org/10.1299/kikaia.71.607
Erdogan F, Ratwani M (1970) Fatigue and fracture of cylindrical shells containing circumferential cracks. Int J Fract Mech 6(4):379–392. https://doi.org/10.1007/BF00182626
Paris PC, Gomez M, Anderson W (1961) A rational analytic theory of fatigue. Trend in Eng. 9–14.
Forman RG, Kearney VE, Engle RM (1967) Numerical analysis of crack propagation in cyclic loaded structures. J Basic Eng 89(3):459–463
Walker K (1970) The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 Aluminum. In Effects of Environment and Complex Load History for Fatigue Life, Special Technical Publication 462, pp. 1–14. Philadelphia: American Society for Testing and Materials.
AFGROW. Fracture mechanics and fatigue crack growth analysis software tool. V. 4.12.15.0, LexTech Inc., USA.
ASTM (2015) ASTM International, 2015. ASTM E647—15 Standard test method for measurement of fatigue crack growth rates. In United States: ASTM International, p. 43. Available at: http://www.astm.org/Standards/E647.
Simunek D, Leitner M, Maierhofer J, Gänser H-P (2015) Fatigue crack growth under constant and variable amplitude loading at semi-elliptical and V-notched steel specimens. Proc Eng 133:348–361. https://doi.org/10.1016/j.proeng.2015.12.670
Rubinstein AA (1991) Mechanics of the crack path formation. Int J Fract 41:29 l-305. doi: https://doi.org/10.1007/BF00012948