An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF

Jun Cai1,2,3, Qiao Dong2,3, Yong Han1, Bei Mao3, Hui Zhang3, Patrik Karlsson4, John Åhlund4, Renzhong Tai5, Yi Yu1, Zhi Liu1,3
1School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
2University of Chinese Academy of Sciences, Beijing, China
3State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of MicroSystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
4Scienta Omicron, Uppsala, Sweden
5Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis (Wiley, Hoboken, 2010)

S. Hüfner, Photoelectron spectroscopy: principles and applications (Springer, Berlin, 2013)

M. Salmeron, R. Schlögl, Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63(4), 169–199 (2008). https://doi.org/10.1016/j.surfrep.2008.01.001

D. Starr, Z. Liu, M. Hävecker et al., Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 42(13), 5833–5857 (2013). https://doi.org/10.1039/C3CS60057B

H.-J. Freund, H. Kuhlenbeck, J. Libuda et al., Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top. Catal. 15(2–4), 201–209 (2001). https://doi.org/10.1023/A:1016686322301

P. Stoltze, J. Nørskov, Bridging the “Pressure Gap” between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55(22), 2502–2505 (1985). https://doi.org/10.1103/PhysRevLett.55.2502

K. Siegbahn, C. Nordling, G. Johansson et al., ESCA Applied to Free Molecules (North-Holland Publishing Co., Amsterdam, 1969)

R.W. Joyner, M.W. Roberts, K. Yates, A “high-pressure” electron spectrometer for surface studies. Surf. Sci. 87(2), 501–509 (1979). https://doi.org/10.1016/0039-6028(79)90544-2

H. Siegbahn, S. Svensson, M. Lundholm, A new method for ESCA studies of liquid-phase samples. J. Electron Spectrosc. Relat. Phenom. 24(2), 205–213 (1981). https://doi.org/10.1016/0368-2048(81)80007-2

H. Ruppender, M. Grunze, C. Kong et al., In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf. Interface Anal. 15(4), 245–253 (1990). https://doi.org/10.1002/sia.740150403

D.F. Ogletree, H. Bluhm, G. Lebedev et al., A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev. Sci. Instrum. 73(11), 3872–3877 (2002). https://doi.org/10.1063/1.1512336

D.F. Ogletree, H. Bluhm, E.D. Hebenstreit et al., Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl. Instrum. Methods A 601(1), 151–160 (2009). https://doi.org/10.1016/j.nima.2008.12.155

H. Bluhm, M. Hävecker, A. Knop-Gericke et al., Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy. J. Phys. Chem. B 108(38), 14340–14347 (2004). https://doi.org/10.1021/jp040080j

M.E. Grass, P.G. Karlsson, F. Aksoy et al., New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev. Sci. Instrum. 81(5), 053106 (2010). https://doi.org/10.1063/1.3427218

J. Schnadt, J. Knudsen, J.N. Andersen et al., The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J. Synchrotron. Radiat. 19(5), 701–704 (2012). https://doi.org/10.1107/S0909049512032700

R. Toyoshima, M. Yoshida, Y. Monya et al., In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. J. Phys. Chem. C 116(35), 18691–18697 (2012). https://doi.org/10.1021/jp301636u

S. Kaya, H. Ogasawara, L.-Å. Näslund et al., Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal. Today 205, 101–105 (2013). https://doi.org/10.1016/j.cattod.2012.08.005

C. Zhang, M.E. Grass, A.H. McDaniel et al., Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat. Mater. 9(11), 944–949 (2010). https://doi.org/10.1038/nmat2851

F. Tao, M.E. Grass, Y. Zhang et al., Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322(5903), 932–934 (2008). https://doi.org/10.1126/science.1164170

G.A. Somorjai, H. Frei, J.Y. Park, Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131(46), 16589–16605 (2009). https://doi.org/10.1021/ja9061954

M. Favaro, B. Jeong, P.N. Ross et al., Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016). https://doi.org/10.1038/ncomms12695

N.J. Divins, A. Inma, E. Carlos et al., Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346(6209), 620–623 (2014). https://doi.org/10.1126/science.1258106

S. Axnanda, E.J. Crumlin, B. Mao et al., Using “Tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015). https://doi.org/10.1038/srep09788

S.K. Eriksson, M. Hahlin, J.M. Kahk et al., A versatile photoelectron spectrometer for pressures up to 30 mbar. Rev. Sci. Instrum. 85(7), 075119 (2014). https://doi.org/10.1063/1.4890665

D. Teschner, A. Pestryakov, E. Kleimenov et al., High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts: part 1: effect of gas ambient and temperature. J. Catal. 230(1), 186–194 (2005). https://doi.org/10.1016/j.jcat.2004.11.036

S. Nemšák, E. Strelcov, H. Guo et al., In aqua electrochemistry probed by XPEEM: Experimental setup, examples, and challenges. Top. Catal. 61(20), 2195–2206 (2018). https://doi.org/10.1007/s11244-018-1065-4

N. Mårtensson, P. Baltzer, P.A. Brühwiler et al., A very high resolution electron spectrometer. J. Electron Spectrosc. Relat. Phenom. 70(2), 117–128 (1994). https://doi.org/10.1016/0368-2048(94)02224-N

F. Tao, S. Dag, L.-W. Wang et al., Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327(5967), 850–853 (2010). https://doi.org/10.1126/science.1182122

P. Gao, S. Li, X. Bu et al., Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9(1), 1019–1024 (2017). https://doi.org/10.1038/nchem.2794

C. Zhang, M.E. Grass, Y. Yu et al., Multielement activity mapping and potential mapping in solid oxide electrochemical cells through the use of operando XPS. ACS Catal. 2(11), 2297–2304 (2012). https://doi.org/10.1021/cs3004243

C. Zhang, Y. Yu, M.E. Grass et al., Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. J. Am. Chem. Soc. 135(31), 11572–11579 (2013). https://doi.org/10.1021/ja402604u

M.O.M. Edwards, P.G. Karlsson, S.K. Eriksson et al., Increased photoelectron transmission in High-pressure photoelectron spectrometers using “swift acceleration”. Nucl. Instrum. Methods A 785, 191–196 (2015). https://doi.org/10.1016/j.nima.2015.02.047

Y. Han, S. Axnanda, E.J. Crumlin et al., Observing the electrochemical oxidation of Co metal at the solid/liquid interface using ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. B. (2017). https://doi.org/10.1021/acs.jpcb.7b05982

M.F. Lichterman, S. Hu, M.H. Richter et al., Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8(8), 2409–2416 (2015). https://doi.org/10.1039/C5EE01014D

P. Baltzer, L. Karlsson, M. Lundqvist et al., Resolution and signal-to-background enhancement in gas-phase electron spectroscopy. Rev. Sci. Instrum. 64(8), 2179–2189 (1993). https://doi.org/10.1063/1.1143957

J.L. Campbell, T. Papp, Widths of the atomic K-N7 levels. Atomic Data Nucl. Data Tables 77(1), 1–56 (2001). https://doi.org/10.1006/adnd.2000.0848

H. Fellner-Feldegg, Ph.D. dissertation, Uppsala University, 1974

S. Mähl, M. Neumann, S. Dieckhoff et al., Characterisation of the VG ESCALAB instrumental broadening functions by XPS measurements at the Fermi edge of silver. J. Electron Spectrosc. Relat. Phenom. 85(3), 197–203 (1997). https://doi.org/10.1016/S0368-2048(97)00074-1

J.J. Olivero, R.L. Longbothum, Empirical fits to the Voigt line width: a brief review. J. Quant. Spectrosc. Radiat. Transf. 17(2), 233–236 (1977). https://doi.org/10.1016/0022-4073(77)90161-3

Y. Ning, Q. Fu, Y. Li et al., A near ambient pressure photoemission electron microscope (NAP-PEEM). Ultramicroscopy 200, 105–110 (2019). https://doi.org/10.1016/j.ultramic.2019.02.028

R. Follath, M. Hävecker, G. Reichardt, K. Lips, J. Bahrdt, F. Schäfers and P. Schmid, presented at the Journal of Physics: Conference Series, 2013 (unpublished)

G. Materlik, T. Rayment, D.I. Stuart, Diamond light source: status and perspectives. Philos. Trans. A Math. Phys. Eng. Sci 373(2036), 20130161 (2015). https://doi.org/10.1098/rsta.2013.0161

X. Liu, W. Yang, Z. Liu, Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv. Mater. 26(46), 7710–7729 (2014). https://doi.org/10.1002/adma.201304676