Hệ thống hỗ trợ quyết định dựa trên trí tuệ nhân tạo để dự đoán các rối loạn tâm thần

Information Systems Frontiers - Tập 25 - Trang 1261-1276 - 2022
Salih Tutun1, Marina E. Johnson2, Abdulaziz Ahmed3, Abdullah Albizri2, Sedat Irgil4, Ilker Yesilkaya5, Esma Nur Ucar4, Tanalp Sengun5, Antoine Harfouche6
1Washington University in St. Louis, St. Louis, USA
2Montclair State University, NJ, USA
3University of Alabama at Birmingham, AL, USA
4Guven Private Health Laboratory, Guven, Turkey
5WeCureX Lab, DNB Analytics, Turkey, Turkey
6University Paris Nanterre, Nanterre, France

Tóm tắt

Khoảng một tỷ người mắc các rối loạn tâm thần, chẳng hạn như trầm cảm, rối loạn lưỡng cực, tâm thần phân liệt và lo âu. Các chuyên gia sức khỏe tâm thần sử dụng nhiều công cụ đánh giá khác nhau để phát hiện và chẩn đoán các rối loạn này. Tuy nhiên, các công cụ này thường phức tạp, chứa quá nhiều câu hỏi và yêu cầu thời gian đáng kể để thực hiện, dẫn đến tỷ lệ tham gia và hoàn thành thấp. Ngoài ra, kết quả thu được từ các công cụ này phải được phân tích và diễn giải một cách thủ công bởi các chuyên gia sức khỏe tâm thần, điều này có thể dẫn đến chẩn đoán không chính xác. Để khắc phục điều này, nghiên cứu này sử dụng phân tích nâng cao và trí tuệ nhân tạo để phát triển một hệ thống hỗ trợ quyết định (DSS) có thể phát hiện và chẩn đoán hiệu quả các rối loạn tâm thần khác nhau. Trong quy trình phát triển DSS, thuật toán Nhận dạng Mẫu Mạng (NEPAR) được sử dụng để xây dựng công cụ đánh giá và xác định các câu hỏi mà người tham gia cần trả lời. Sau đó, nhiều mô hình học máy được đào tạo bằng cách sử dụng câu trả lời của người tham gia cho các câu hỏi này cùng với dữ liệu lịch sử khác làm đầu vào để dự đoán sự tồn tại và loại rối loạn tâm thần của họ. Kết quả cho thấy DSS đề xuất có khả năng chẩn đoán tự động các rối loạn tâm thần chỉ bằng 28 câu hỏi mà không cần bất kỳ đầu vào nào từ con người, với mức độ chính xác đạt 89%. Hơn nữa, công cụ chẩn đoán rối loạn tâm thần được đề xuất có số câu hỏi ít hơn đáng kể so với các công cụ tương tự; do đó, nó cung cấp tỷ lệ tham gia và hoàn thành cao hơn. Vì vậy, các chuyên gia sức khỏe tâm thần có thể sử dụng DSS và công cụ đánh giá đi kèm này để cải thiện quyết định lâm sàng và độ chính xác chẩn đoán.

Từ khóa

#rối loạn tâm thần #hệ thống hỗ trợ quyết định #trí tuệ nhân tạo #học máy #chẩn đoán bệnh

Tài liệu tham khảo

Akhavan Abiri, F., & Shairi, M. R. (2020a). Short Forms of Symptom Checklist (SCL): Investigation of validity & Reliability. Clinical Psychology and Personality, 18(1), 137–162. https://doi.org/10.22070/CPAP.2020.2929 Akhavan Abiri, F., & Shairi, M. R. (2020b). Validity and Reliability of Symptom Checklist-90-Revised (SCL-90-R) and Brief Symptom Inventory-53 (BSI-53). Clinical Psychology and Personality, 17(2), 169–195. https://doi.org/10.22070/CPAP.2020.2916 Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management, 60, 102387. https://doi.org/10.1016/J.IJINFOMGT.2021.102387 Americans, N., Article, S., Haghir, H., Mokhber, N., Azarpazhooh, M. R., Haghighi, M. B. … Plan, Y. (2013). … World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. IACAPAP E-Textbook of Child and Adolescent Mental Health, 55(1993), 135–139. https://doi.org/10.4103/0019 Balcombe, L., & De Leo, D. (2021). Digital Mental Health Challenges and the Horizon Ahead for Solutions XSL • FO RenderX. JMIR Ment Health, 8(3), 1. https://doi.org/10.2196/26811 Barker-Collo, S. L. (2003). Culture and validity of the Symptom Checklist-90-Revised and Profile of Mood States in a New Zealand student sample. Cultural Diversity and Ethnic Minority Psychology, 9(2), 185–196. https://doi.org/10.1037/1099-9809.9.2.185 Bernet, W., Baker, A. J. L., & Verrocchio, M. C. (2015). Symptom Checklist-90-Revised Scores in Adult Children Exposed to Alienating Behaviors: An Italian Sample. Journal of Forensic Sciences, 60(2), 357–362. https://doi.org/10.1111/1556-4029.12681 Borgesius, F. J. Z. (2020). Strengthening legal protection against discrimination by algorithms and artificial intelligence. 24(10), 1572–1593. https://doi.org/10.1080/13642987.2020.1743976 Buhmann, A., & Fieseler, C. (2021). Towards a deliberative framework for responsible innovation in artificial intelligence. Technology in Society, 64, 101475. https://doi.org/10.1016/J.TECHSOC.2020.101475 Casado-Lumbreras, C., Rodríguez-González, A., Álvarez-Rodríguez, J. M., & Colomo-Palacios, R. (2012). PsyDis: Towards a diagnosis support system for psychological disorders. Expert Systems with Applications, 39(13), 11391–11403. https://doi.org/10.1016/j.eswa.2012.04.033 Chandler, C., Foltz, P. W., & Elvevåg, B. (2020). Using Machine Learning in Psychiatry: The Need to Establish a Framework That Nurtures Trustworthiness. Schizophrenia Bulletin, 46(1), 11–14. https://doi.org/10.1093/SCHBUL/SBZ105 Chekroud, A. M., Gueorguieva, R., Krumholz, H. M., Trivedi, M. H., Krystal, J. H., & McCarthy, G. (2017). Reevaluating the efficacy and predictability of antidepressant treatments: A symptom clustering approach. JAMA Psychiatry, 74(4), 370–378. https://doi.org/10.1001/jamapsychiatry.2017.0025 Chen, I. H., Lin, C. Y., Zheng, X., & Griffiths, M. D. (2020). Assessing Mental Health for China’s Police: Psychometric Features of the Self-Rating Depression Scale and Symptom Checklist 90-Revised. International Journal of Environmental Research and Public Health 2020, 17(8), 2737. https://doi.org/10.3390/IJERPH17082737.17 Chen, I. Y., Szolovits, P., & Ghassemi, M. (2019). Can AI help reduce disparities in general medical and mental health care? AMA Journal of Ethics, 21(2), 167–179. https://doi.org/10.1001/AMAJETHICS.2019.167 Chen, S., Stromer, D., Alabdalrahim, H. A., Schwab, S., Weih, M., & Maier, A. (2020). Automatic dementia screening and scoring by applying deep learning on clock-drawing tests. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-74710-9 Crawford, K., & Calo, R. (2016). There is a blind spot in AI research. Nature 2016, 538:7625(7625), 311–313. https://doi.org/10.1038/538311a. 538 D’Alfonso, S. (2020). AI in mental health. Current Opinion in Psychology, 36, 112–117. https://doi.org/10.1016/J.COPSYC.2020.04.005 D’Aquin, M., Troullinou, P., O, N. E., Cullen, A., Faller, G., & Holden, L. (2018). Towards an “Ethics by Design’’’ Methodology for AI Research Projects.” 18. https://doi.org/10.1145/3278721 Dennehy, D., Pappas, I. O., Wamba, S. F., & Michael, K. (2021). Socially responsible information systems development: the role of AI and business analytics. Information Technology and People, 34(6), 1541–1550. https://doi.org/10.1108/ITP-10-2021-871 Derogatis, L. (2017). Symptom Checklist-90-Revised, Brief Symptom Inventory, and BSI-18. - PsycNET.Handbook of Psychological Assessment in Primary Care Settings,599–629. https://psycnet.apa.org/record/2017-23747-023 Derogatis, L., & Fitzpatrick, M. (2004). The SCL-90-R, the Brief Symptom Inventory (BSI), and the BSI-18. In The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults (pp. 1–41). https://psycnet.apa.org/record/2004-14941-001 Derogatis, L., & Spencer, P. (1993). Brief Symptom Inventory Dignum, V., Baldoni, M., Baroglio, C., Caon, M., Chatila, R., Dennis, L. … De Wildt, T. (2018). Ethics by Design: Necessity or Curse? AIES 2018 - Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 18, 60–66. https://doi.org/10.1145/3278721.3278745 Docrat, S., Besada, D., Cleary, S., Daviaud, E., & Lund, C. (2019). Mental health system costs, resources and constraints in South Africa: a national survey. Health Policy and Planning, 34(9), 706–719. https://doi.org/10.1093/HEAPOL/CZZ085 Fabiano, F., & Haslam, N. (2020). Diagnostic inflation in the DSM: A meta-analysis of changes in the stringency of psychiatric diagnosis from DSM-III to DSM-5. Clinical Psychology Review, 80, 101889. https://doi.org/10.1016/J.CPR.2020.101889 Fellmeth, G., Harrison, S., Opondo, C., Nair, M., Kurinczuk, J. J., & Alderdice, F. (2021). Validated screening tools to identify common mental disorders in perinatal and postpartum women in India: a systematic review and meta-analysis. BMC Psychiatry 2021, 21:1(1), 1–10. https://doi.org/10.1186/S12888-021-03190-6. 21 Floridi, L., & Cowls, J. (2021). A Unified Framework of Five Principles for AI in Society. Philosophical Studies Series, 144, 5–17. https://doi.org/10.1007/978-3-030-81907-1_2 Fosso Wamba, S., Bawack, R. E., Guthrie, C., Queiroz, M. M., & Carillo, K. D. A. (2021). Are we preparing for a good AI society? A bibliometric review and research agenda. Technological Forecasting and Social Change, 164, 120482. https://doi.org/10.1016/J.TECHFORE.2020.120482 Fosso Wamba, S., & Queiroz, M. M. (2021). Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions. Information Systems Frontiers, 1–16. https://doi.org/10.1007/S10796-021-10142-8/TABLES/7 Galesic, M., & Bosnjak, M. (2009). Effects of questionnaire length on participation and indicators of response quality in a web survey. Public Opinion Quarterly, 73(2), 349–360. https://doi.org/10.1093/poq/nfp031 Gallardo-Pujol, D., & Pereda, N. (2013). Person-environment transactions: persionality traits moderate and mediate the effects. Personality and Mental Health, 7(April 2012), 102–113. https://doi.org/10.1002/pmh Garcia-Zattera, M. J., Mutsvari, T., Jara, A., Declerck, D., & Lesaffre, E. (2010). Correcting for misclassification for a monotone disease process with an application in dental research. Statistics in Medicine, 29(30), 3103–3117. https://doi.org/10.1002/sim.3906 Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare, 295–336. https://doi.org/10.1016/B978-0-12-818438-7.00012-5 Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H. C., & Jeste, D. V. (2019). Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Current Psychiatry Reports 2019, 21:11(11), 1–18. https://doi.org/10.1007/S11920-019-1094-0. 21 Gupta, M., Parra, C. M., & Dennehy, D. (2021). Questioning Racial and Gender Bias in AI-based Recommendations: Do Espoused National Cultural Values Matter? Information Systems Frontiers, 1–17. https://doi.org/10.1007/S10796-021-10156-2/TABLES/5 Hanna, F., Barbui, C., Dua, T., Lora, A., van Altena, M. R., & Saxena, S. (2018). Global mental health: how are we doing? World Psychiatry, 17(3), 368. https://doi.org/10.1002/WPS.20572 Hao, B., Li, L., Li, A., & Zhu, T. (2013). Predicting mental health status on social media a preliminary study on microblog. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8024 LNCS(PART 2), 101–110. https://doi.org/10.1007/978-3-642-39137-8-12 Hardt, J., & Gerbershagen, H. U. (2001). Cross-validation of the SCL-27: A short psychometric screening instrument for chronic pain patients. European Journal of Pain, 5(2), 187–197. https://doi.org/10.1053/eujp.2001.0231 Hardt, J. (2008). The symptom checklist-27-plus (SCL-27-plus): a modern conceptualization of a traditional screening instrument. Psycho-Social Medicine, 5, Doc08 Hastie, T., Tibshirani, R., & Friedman, J. (2009). Support Vector Machines and Flexible Discriminants. In The elements of statistical learning (pp. 1–42). https://doi.org/10.1007/b94608_12 Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer Series in Statistics Hildenbrand, A. K., Nicholls, E. G., Aggarwal, R., Brody-Bizar, E., & Daly, B. P. (2015). Symptom Checklist-90-Revised (SCL-90-R). The Encyclopedia of Clinical Psychology, 1–5. https://doi.org/10.1002/9781118625392.wbecp495 Holi, M. (2003). Assessment of psychiatric symptoms using the SCL-90. [Matti Holi] IBM (2020). Trustworthy AI. https://www.ibm.com/watson/trustworthy-ai Imperatori, C., Bianciardi, E., Niolu, C., Fabbricatore, M., Gentileschi, P., Lorenzo, G. … Innamorati, M. (2020). The Symptom-Checklist-K-9 (SCL-K-9) Discriminates between Overweight/Obese Patients with and without Significant Binge Eating Pathology: Psychometric Properties of an Italian Version. Nutrients 2020, 12(3), 674. https://doi.org/10.3390/NU12030674. 12 Iphofen, R., & Kritikos, M. (2019). Regulating artificial intelligence and robotics: ethics by design in a digital society. https://doi.org/10.1080/21582041.201816 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 103). Springer New York. https://doi.org/10.1007/978-1-4614-7138-7 Jenkins, R., Kydd, R., Mullen, P., Thomson, K., Sculley, J., Kuper, S. … Wong, M. L. (2010). International migration of doctors, and its impact on availability of psychiatrists in low and middle income countries. PLoS ONE, 5(2), 1–9. https://doi.org/10.1371/journal.pone.0009049 Johnson, M., Albizri, A., & Harfouche, A. (2021). Responsible Artificial Intelligence in Healthcare: Predicting and Preventing Insurance Claim Denials for Economic and Social Wellbeing. Information Systems Frontiers, 1–17. https://doi.org/10.1007/s10796-021-10137-5 Johnson, M., Albizri, A., Harfouche, A., & Tutun, S. (2021). Digital transformation to mitigate emergency situations: increasing opioid overdose survival rates through explainable artificial intelligence. Industrial Management and Data Systems. https://doi.org/10.1108/IMDS-04-2021-0248/FULL/XML Johnson, M., Albizri, A., & Simsek, S. (2020). Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis. Annals of Operations Research, 1–31. https://doi.org/10.1007/s10479-020-03872-6 Khan, M. E., & Tutun, S. (2021). Understanding and Predicting Organ Donation Outcomes Using Network-based Predictive Analytics. Procedia Computer Science, 185, 185–192. https://doi.org/10.1016/J.PROCS.2021.05.020 Khanal, P., Devkota, N., Dahal, M., Paudel, K., & Joshi, D. (2020). Mental health impacts among health workers during COVID-19 in a low resource setting: a cross-sectional survey from Nepal. Globalization and Health, 2020 16:1(1), 1–12. https://doi.org/10.1186/S12992-020-00621-Z. 16 Kilbourne, A. M., Beck, K., Spaeth-Rublee, B., Ramanuj, P., O’Brien, R. W., Tomoyasu, N., & Pincus, H. A. (2018). Measuring and improving the quality of mental health care: a global perspective. World Psychiatry, 17(1), 30–38. https://doi.org/10.1002/WPS.20482 Kim, J. H., & Jang, S. (2016). The Relationship Between Job Stress, Job Satisfaction, and the Symptom Checklist-90-Revision (SCL-90-R) in Marine Officers on Board. Journal of Preventive Medicine and Public Health, 49(6), 376. https://doi.org/10.3961/JPMPH.16.046 Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A. … Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 3521–3526. https://doi.org/10.1073/PNAS.1611835114/-/DCSUPPLEMENTAL Kruyen, P. M., Emons, W. H. M., & Sijtsma, K. (2013). On the Shortcomings of Shortened Tests: A Literature Review. International Journal of Testing, 13(3), 223–248. https://doi.org/10.1080/15305058.2012.703734 Li, P., Wang, F., Ji, G. Z., Miao, L., You, S., & Chen, X. (2018). The psychological results of 438 patients with persisting GERD symptoms by Symptom Checklist 90-Revised (SCL-90-R) questionnaire. Medicine (United States), 97(5), 10768. https://doi.org/10.1097/MD.0000000000009783 Lin, L., Hu, P. J. H., & Liu Sheng, O. R. (2006). A decision support system for lower back pain diagnosis: Uncertainty management and clinical evaluations. Decision Support Systems, 42(2), 1152–1169. https://doi.org/10.1016/j.dss.2005.10.007 Lundqvist, L. O., & Schröder, A. (2021). Evaluation of the SCL-9S, a short version of the symptom checklist-90-R, on psychiatric patients in Sweden by using Rasch analysis. https://doi.org/10.1080/08039488.2021.1901988 Luxton, D. D. (2016). An Introduction to Artificial Intelligence in Behavioral and Mental Health Care. Artificial Intelligence in Behavioral and Mental Health Care, 1–26. https://doi.org/10.1016/B978-0-12-420248-1.00001-5 Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), https://doi.org/10.1177/2053951716679679 Mittelstadt, B. D., & Floridi, L. (2016). The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts. The Ethics of Biomedical Big Data (1st ed., pp. 445–480). Cham: Springer. https://doi.org/10.1007/978-3-319-33525-4_19 Morley, J., Machado, C., Burr, C., Cowls, J., Taddeo, M., & Floridi, L. (2019). The Debate on the Ethics of AI in Health Care: A Reconstruction and Critical Review. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3486518 Mueller, A., Candrian, G., Grane, V. A., Kropotov, J. D., Ponomarev, V. A., & Baschera, G. M. (2011). Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: A validation study. Nonlinear Biomedical Physics, 5(1), 1–18. https://doi.org/10.1186/1753-4631-5-5 Nie, D., Ning, Y., & Zhu, T. (2012). Predicting mental health status in the context of web browsing. Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012, 185–189. https://doi.org/10.1109/WI-IAT.2012.196 Ogasawara, K., Nakamura, Y., Kimura, H., Aleksic, B., & Ozaki, N. (2017). Issues on the diagnosis and etiopathogenesis of mood disorders: reconsidering DSM-5. Journal of Neural Transmission, 2017 125:2(2), 211–222. https://doi.org/10.1007/S00702-017-1828-2. 125 Olsen, L. R., Mortensen, E. L., & Bech, P. (2004). Prevalence of major depression and stress indicators in the Danish general population. Acta Psychiatrica Scandinavica, 109(2), 96–103. https://doi.org/10.1046/j.0001-690X.2003.00231.x Park, S. C., & Kim, Y. K. (2020). Anxiety Disorders in the DSM-5: Changes, Controversies, and Future Directions. Advances in Experimental Medicine and Biology, 1191, 187–196. https://doi.org/10.1007/978-981-32-9705-0_12 Parra, C. M., Gupta, M., & Mikalef, P. (2021). Information and communication technologies (ICT)-enabled severe moral communities and how the (Covid19) pandemic might bring new ones. International Journal of Information Management, 57, 102271. https://doi.org/10.1016/J.IJINFOMGT.2020.102271 Pechenizkiy, M., Tsymbal, A., Puuronen, S., & Pechenizkiy, O. (2006). Class noise and supervised learning in medical domains: The effect of feature extraction. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2006, 708–713. https://doi.org/10.1109/CBMS.2006.65 Perkins, A., Ridler, J., Browes, D., Peryer, G., Notley, C., & Hackmann, C. (2018). Experiencing mental health diagnosis: a systematic review of service user, clinician, and carer perspectives across clinical settings. The Lancet Psychiatry, 5(9), 747–764. https://doi.org/10.1016/S2215-0366(18)30095-6 Petersen, I., Bhana, A., Fairall, L. R., Selohilwe, O., Kathree, T., Baron, E. C. … Lund, C. (2019). Evaluation of a collaborative care model for integrated primary care of common mental disorders comorbid with chronic conditions in South Africa. BMC Psychiatry 2019, 19:1(1), 1–11. https://doi.org/10.1186/S12888-019-2081-Z. 19 Price, W. N. I. (2019). Medical AI and Contextual Bias. Harvard Journal of Law & Technology (Harvard JOLT), 33. https://heinonline.org/HOL/Page?handle=hein.journals/hjlt33&id=71&div=&collection= Prinz, U., Nutzinger, D. O., Schulz, H., Petermann, F., Braukhaus, C., & Andreas, S. (2013). Comparative psychometric analyses of the SCL-90-R and its short versions in patients with affective disorders. BMC Psychiatry, 13, 1–9. https://doi.org/10.1186/1471-244X-13-104 Ransing, R., Ramalho, R., Orsolini, L., Adiukwu, F., Gonzalez-Diaz, J. M., Larnaout, A. … Kilic, O. (2020). Can COVID-19 related mental health issues be measured? Brain, Behavior, and Immunity, 88, 32. https://doi.org/10.1016/J.BBI.2020.05.049 Razzouk, D., Mari, J. J., Shirakawa, I., Wainer, J., & Sigulem, D. (2006). Decision support system for the diagnosis of schizophrenia disorders. Brazilian Journal of Medical and Biological Research, 39(1), 119–128 Ritchie, H. (2018). Global burden of disease studies: Implications for mental and substance use disorders. In Health Affairs. Issue 6). Project HOPE, 35, https://doi.org/10.1377/HLTHAFF.2016.0082 Rovini, E., Maremmani, C., Moschetti, A., Esposito, D., & Cavallo, F. (2018). Comparative Motor Pre-clinical Assessment in Parkinson’s Disease Using Supervised Machine Learning Approaches. Annals of Biomedical Engineering, 46(12), 2057–2068. https://doi.org/10.1007/s10439-018-2104-9 Rytilä-Manninen, M., Fröjd, S., Haravuori, H., Lindberg, N., Marttunen, M., Kettunen, K., & Therman, S. (2016). Psychometric properties of the Symptom Checklist-90 in adolescent psychiatric inpatients and age- and gender-matched community youth. Child and Adolescent Psychiatry and Mental Health 2016 10:1, 10(1), 1–12. https://doi.org/10.1186/S13034-016-0111-X Schmitz, N., Hartkamp, N., Kiuse, J., Franke, G. H., Reister, G., & Tress, W. (2000). The Symptom Check-List-90-R (SCL-90-R): A German validation study. Quality of Life Research, 9(2), 185–193. https://doi.org/10.1023/A:1008931926181 Schönberger, D. (2019). Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. International Journal of Law and Information Technology, 27(2), 171–203. https://doi.org/10.1093/IJLIT/EAZ004 Sereda, Y., & Dembitskyi, S. (2016). Validity assessment of the symptom checklist SCL-90-R and shortened versions for the general population in Ukraine. BMC Psychiatry 2016 16:1, 16(1), 1–11. https://doi.org/10.1186/S12888-016-1014-3 Simsek, S., Albizri, A., Johnson, M., Custis, T., & Weikert, S. (2020). Predictive data analytics for contract renewals: a decision support tool for managerial decision-making. Journal of Enterprise Information Management. https://doi.org/10.1108/JEIM-12-2019-0375 Sinyor, M., Schaffer, A., & Levitt, A. (2010). The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial: A review. Canadian Journal of Psychiatry, 55(3), 126–135. https://doi.org/10.1177/070674371005500303 Sleep, C., Lynam, D. R., & Miller, J. D. (2021). Personality impairment in the DSM-5 and ICD-11: Current standing and limitations. Current Opinion in Psychiatry, 34(1), 39–43. https://doi.org/10.1097/YCO.0000000000000657 Stewart, S. L., Celebre, A., Hirdes, J. P., & Poss, J. W. (2020). Risk of Suicide and Self-harm in Kids: The Development of an Algorithm to Identify High-Risk Individuals Within the Children’s Mental Health System. Child Psychiatry and Human Development, 51(6), 913. https://doi.org/10.1007/S10578-020-00968-9 Thieme Anja, B., & Doherty Gavin. (2020). Machine Learning in Mental Health. ACM Transactions on Computer-Human Interaction (TOCHI), 27(5), 34. https://doi.org/10.1145/3398069 Trivedi, M. H., Kern, J. K., Grannemann, B. D., Altshuler, K. Z., & Sunderajan, P. (2004). A computerized clinical decision support system as a means of implementing depression guidelines. Psychiatric Services, 55(8), 879–885. https://doi.org/10.1176/appi.ps.55.8.879 Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: key problems and solutions. AI & SOCIETY 2021, 1, 1–16. https://doi.org/10.1007/S00146-021-01154-8 Tutun, S., Khasawneh, M. T., & Zhuang, J. (2017). New framework that uses patterns and relations to understand terrorist behaviors. Expert Systems with Applications, 78, 358–375. https://doi.org/10.1016/J.ESWA.2017.02.029 Tutun, S., Tosyali, A., Sangrody, H., Khasawneh, M., Johnson, M., Albizri, A., & Harfouche, A. (2022). Artificial intelligence in energy industry: forecasting electricity consumption through cohort intelligence & adaptive neural fuzzy inference system. Https://Doi.Org, 2046514, 1–18. https://doi.org/10.1080/2573234X.2022.2046514 Urbán, R., Arrindell, W. A., Demetrovics, Z., Unoka, Z., & Timman, R. (2016). Cross-cultural confirmation of bi-factor models of a symptom distress measure: Symptom Checklist-90-Revised in clinical samples. Psychiatry Research, 239, 265–274. https://doi.org/10.1016/J.PSYCHRES.2016.03.039 Wainberg, M. L., Scorza, P., Shultz, J. M., Helpman, L., Mootz, J. J., Johnson, K. A. … Arbuckle, M. R. (2017). Challenges and Opportunities in Global Mental Health: a Research-to-Practice Perspective. Current Psychiatry Reports, 19(5), 28. https://doi.org/10.1007/S11920-017-0780-Z Wang, W. M., & Cheung, C. F. (2011). A narrative-based reasoning with applications in decision support for social service organizations. Expert Systems with Applications, 38(4), 3336–3345. https://doi.org/10.1016/j.eswa.2010.08.118 WHO (2018). Mental health: strengthening our response. https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response WHO (2020). World Mental Health Day: an opportunity to kick-start a massive scale-up in investment in mental health. https://www.who.int/news/item/27-08-2020-world-mental-health-day-an-opportunity-to-kick-start-a-massive-scale-up-in-investment-in-mental-health Zhang, Z., Lin, W., Liu, M., & Mahmoud, M. (2020). Multimodal Deep Learning Framework for Mental Disorder Recognition. Proceedings – 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 344–350. https://doi.org/10.1109/FG47880.2020.00033