Amyloid fibrils formation and amorphous aggregation in concanavalin A

Biophysical Chemistry - Tập 125 Số 1 - Trang 184-190 - 2007
Valeria Vetri1,2, Claudio Canale3, Annalisa Relini3, Fabio Librizzi2, Valeria Militello1,2, Alessandra Gliozzi3, Maurizio Leone1,2
1Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Sez. di Palermo, Via U. La Malfa 153, 90146 Palermo, Italy
2Università di Palermo, Dipartimento di Scienze Fisiche ed Astronomiche, Via Archirafi 36, 90123 Palermo, Italy
3Università di Genova, Dipartimento di Fisica, Via Dodecaneso 33, 16146 Genova, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Harper, 1997, Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins, Annu. Rev. Biochem., 66, 385, 10.1146/annurev.biochem.66.1.385

Kelly, 1998, The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways, Curr. Opin. Struct. Biol., 8, 101, 10.1016/S0959-440X(98)80016-X

Bellotti, 2000, Immunoglobulin light chain amyloidoses. The archetype of structural and pathogenic variability, J. Struct. Biol., 130, 280, 10.1006/jsbi.2000.4248

Rochet, 2000, Amyloid fibrillogenesis: themes and variations, Curr. Opin. Struct. Biol., 10, 60, 10.1016/S0959-440X(99)00049-4

Collinge, 2001, Prion diseases of humans and animals: their causes and molecular basis, Annu. Rev. Neurosci., 24, 519, 10.1146/annurev.neuro.24.1.519

Uversky, 2004, Conformational constraints for amyloid fibrillation: the importance of being unfolded, Biochim. Biophys. Acta, 1698, 131, 10.1016/j.bbapap.2003.12.008

Jiménez, 1999, Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing, EMBO J., 18, 815, 10.1093/emboj/18.4.815

Serpell, 2000, Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation, Proc. Natl. Acad. Sci. U. S. A., 97, 4897, 10.1073/pnas.97.9.4897

Stefani, 2004, Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world, Biochim. Biophys. Acta, 1739, 5, 10.1016/j.bbadis.2004.08.004

Fandrich, 2002, The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation, EMBO J., 21, 5682, 10.1093/emboj/cdf573

Chiti, 2002, Kinetic partitioning of protein folding and aggregation, Nat. Struct. Biol., 9, 137, 10.1038/nsb752

Khurana, 2001, Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates, Biochemistry, 40, 3525, 10.1021/bi001782b

Militello, 2003, Conformational changes involved in thermal aggregation processes of bovine serum albumin, Biophys. Chemist., 105, 133, 10.1016/S0301-4622(03)00153-4

Vaiana, 2004, Irreversible formation of intermediate BSA oligomers requires and induces conformational changes, Proteins, 55, 1053, 10.1002/prot.20074

Vetri, 2005, Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin, Biophys. Chem., 113, 83, 10.1016/j.bpc.2004.07.042

Booth, 1997, Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis, Nature, 385, 787, 10.1038/385787a0

Arai, 1999, Reversibility and hierarchy of thermal transition of hen egg-white lysozyme studied by small-angle X-ray scattering, Biophys. J., 76, 2192, 10.1016/S0006-3495(99)77374-1

Hamada, 2002, A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea, Protein Sci., 11, 2417, 10.1110/ps.0217702

Senear, 1981, Effects of saccharide and salt binding on dimer–tetramer equilibrium of concanavalin A, Biochemistry, 20, 3076, 10.1021/bi00514a014

Bhattacharyya, 1991, Interactions of asparagine-linked carbohydrates with concanavalin A. Nuclear magnetic relaxation dispersion and circular dichroism studies, J. Biol. Chem., 266, 9835, 10.1016/S0021-9258(18)92895-4

Hardman, 1982, Manganese and calcium binding sites of concanavalin A, J. Mol. Biol., 5, 69, 10.1016/0022-2836(82)90513-7

Sanders, 1998, Effect of metal ion substitutions in concanavalin A on the binding of carbohydrates and on thermal stability, J. Inorg. Biochem., 70, 71, 10.1016/S0162-0134(98)00016-6

Chatterjee, 2005, Quaternary association and reactivation of dimeric concanavalin A, Int. J. Biol. Macromol., 35, 103, 10.1016/j.ijbiomac.2005.01.005

Sinha, 2005, Unfolding studies on soybean agglutinin and concanavalin A tetramers: a comparative account, Biophys. J., 88, 1300, 10.1529/biophysj.104.051052

Mitra, 2002, Conformational stability of legume lectins reflect their different modes of quaternary association: solvent denaturation studies on concanavalin A and winged bean acidic agglutin, Biochemistry, 41, 9256, 10.1021/bi020240m

Emsley, 1994, Structure of pentameric human serum amyloid P component, Nature, 367, 338, 10.1038/367338a0

Pflumm, 1974, Alkali and urea induced conformation changes in concanavalin A, Biochemistry, 13, 4982, 10.1021/bi00721a017

Xu, 2005, Trifluoroethanol-induced unfolding of concanavalin A: equilibrium and time-resolved optical spectroscopic studies, Biochemistry, 44, 7976, 10.1021/bi050003u

Fink, 1998, Protein aggregation: folding aggregates, inclusion bodies and amyloid, Fold. Des., 3, 9, 10.1016/S1359-0278(98)00002-9

Richardson, 2002, Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation, Proc. Natl. Acad. Sci. U. S. A., 99, 2754, 10.1073/pnas.052706099

Dam, 2000, Binding of multivalent carbohydrates to concanavalin A and Dioclea Grandiflora lectin, J. Biol. Chem., 275, 14230, 10.1074/jbc.275.19.14223

Dam, 2002, Negative cooperativity associated with binding of multivalent carbohydrates to lectins. Thermodynamic analysis of the “multivalency effect”, Biochemistry, 41, 1351, 10.1021/bi015830j

Dam, 2002, Thermodynamic binding parameters of individual epitopes of multivalent carbohydrates to concanavalin A as determined by “reverse” isothermal titration microcalorimetry, Biochemistry, 41, 1359, 10.1021/bi015829k

Mangold, 2006, Binding of monomeric and dimeric concanavalin A to mannose-functionalized dendrimers, Org. Biomol. Chem., 4, 2458, 10.1039/b600066e

Tiegs, 1992, A T cell-dependent experimental liver injury in mice inducible by concanavalin A, J. Clin. Invest., 90, 196, 10.1172/JCI115836

Ohta, 2001, Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage, Nature, 414, 916, 10.1038/414916a

Song, 2003, RNA interference targeting Fas protects mice from fulminant hepatitis, Nat. Med., 9, 347, 10.1038/nm828

Moreno, 2005, CCR5 deficiency exacerbates T-cell-mediated hepatitis in mice, Hepatology, 42, 854, 10.1002/hep.20865

Fukuda, 2005, Therapeutic administration of Y-40138, a multiple cytokine modulator, inhibits concanavalin A-induced hepatitis in mice, Eur. J. Pharmacol., 523, 137, 10.1016/j.ejphar.2005.08.060

Cribbs, 1996, Cross-linking of concanavalin receptors on cortical neurons induces programmed cell death, Neuroscience, 75, 173, 10.1016/0306-4522(96)80001-P

Anderson, 1995, Differential induction of immediate early gene proteins in cultured neurons by beta-amyloid (Aβ): association of c-jun with Aβ-induced apoptosis, J. Neurochem., 65, 1487, 10.1046/j.1471-4159.1995.65041487.x

Naiki, 1989, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T, Anal. Biochem., 177, 244, 10.1016/0003-2697(89)90046-8

Naiki, 1999, Kinetic analysis of amyloid fibril formation, Methods Enzymol., 309, 305, 10.1016/S0076-6879(99)09022-9

Kudou, 2004, Characterization of heat-induced aggregates of concanavalin A using fluorescent probes, Sci. Technol. Adv. Mater., 5, 339, 10.1016/j.stam.2003.12.012

Bouckaert, 1995, Crystallographic structure of metal-free concanavalin A at 2.5Å resolution, Proteins, 23, 510, 10.1002/prot.340230406

Sanz-Aparicio, 1997, The crystal structure of Canavalia brasiliensis lectin suggest a correlation between its quaternary conformation and its distinct biological properties from concanavalin A, FEBS Lett., 17, 114, 10.1016/S0014-5793(97)00137-3

Relini, 2004, Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils, J. Mol. Biol., 338, 943, 10.1016/j.jmb.2004.03.054

Relini, 2004, Ultrastructural organization of ex-vivo amyloid fibrils formed by the apolipoprotein A-I Leu174Ser variant: an atomic force microscopy study, Biochim. Biophys. Acta, 1690, 33, 10.1016/j.bbadis.2004.04.007

Kudou, 2005, Stretched-exponential analysis of heat-induced aggregation of apo–concanavalin A, Prot. J., 24, 193, 10.1007/s10930-005-7843-4

Kelly, 1997, Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases, Structure, 5, 595, 10.1016/S0969-2126(97)00215-3

Lashuel, 1998, Characterization of the transthyretin acid denaturation pathway by analytical ultracentrifugation: implications for wild type, V30M and L55P amyloid fibril formation, Biochemistry, 37, 17851, 10.1021/bi981876+

Quintas, 1999, The tetrameric protein transthyretin dissociates to a non-native monomer in solution, J. Biol. Chem., 274, 32943, 10.1074/jbc.274.46.32943

Quintas, 2001, Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants, J. Biol. Chem., 276, 27207, 10.1074/jbc.M101024200

Foss, 2005, The pathway by which the tetrameric protein transthyretin dissociates, Biochemistry, 44, 15525, 10.1021/bi051608t

Ferrone, 1999, Analysis of protein aggregation kinetics, Methods Enzymol., 309, 256, 10.1016/S0076-6879(99)09019-9

Padrick, 2002, Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis, Biochemistry, 41, 4694, 10.1021/bi0160462

Librizzi, 2005, The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways, Protein Sci., 14, 3129, 10.1110/ps.051692305

Manno, 2006, Kinetics of insulin aggregation: disentanglement of amyloid fibrillation from large-size cluster formation, Biophys. J., 90, 4585, 10.1529/biophysj.105.077636

Carrotta, 2005, Protofibril formation of amyloid β-protein at low pH via a non-cooperative elongation mechanism, J. Biol. Chem., 280, 30001, 10.1074/jbc.M500052200