Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors

Cell Calcium - Tập 47 Số 3 - Trang 264-272 - 2010
Elena Alberdi1, María Victoria Sánchez‐Gómez1, Fabio Cavaliere1, Alberto Pérez‐Samartín1, José L. Zugaza2, Ramón Trullás3, Marı́a Domercq1, Carlos Matute1
1Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Departamento de Neurociencias, Universidad del País Vasco, E-48940 Leioa, Spain
2CIC-Biogune, E-48160 Derio, Spain
3Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Neurobiology Unit, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d’Investigacions Biomèdiques August Pi i Sunyer, E-08036 Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Billings, 2005, Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice, Neuron, 45, 675, 10.1016/j.neuron.2005.01.040

Oddo, 2006, Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathology, J. Biol. Chem., 281, 1599, 10.1074/jbc.M507892200

Kuo, 1996, Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains, J. Biol. Chem., 271, 4077, 10.1074/jbc.271.8.4077

Kayed, 2003, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, 300, 486, 10.1126/science.1079469

Gong, 2003, Alzheimer's disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss, Proc. Natl. Acad. Sci. U.S.A., 100, 10417, 10.1073/pnas.1834302100

Lacor, 2004, Synaptic targeting by Alzheimer's-related amyloid β oligomers, J. Neurosci., 24, 10191, 10.1523/JNEUROSCI.3432-04.2004

Lue, 1999, Soluble amyloid b peptide concentration as a predictor of synaptic change in Alzheimer's disease, Am. J. Pathol., 155, 853, 10.1016/S0002-9440(10)65184-X

McLean, 1999, Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol., 46, 860, 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M

Naslund, 2000, Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline, JAMA, 283, 1571, 10.1001/jama.283.12.1571

LaFerla, 2002, Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease, Nat. Rev. Neurosci., 3, 862, 10.1038/nrn960

Wang, 2000, β-Amyloid (1–42) binds to alpha 7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology, J. Biol. Chem., 275, 5626, 10.1074/jbc.275.8.5626

Arispe, 2007, Aβ ion channels. Prospects for treating Alzheimer's disease with Aβ channel blockers, Biochim. Biophys. Acta-Biomembr., 1768, 1952, 10.1016/j.bbamem.2007.03.014

De Felice, 2007, Aβ oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine, J. Biol. Chem., 282, 11590, 10.1074/jbc.M607483200

Demuro, 2005, Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers, J. Biol. Chem., 280, 17294, 10.1074/jbc.M500997200

Kelly, 2006, β Amyloid-induced dynamin 1 degradation is mediated by N-methyl-d-aspartate receptors in hippocampal neurons, J. Biol. Chem., 281, 28079, 10.1074/jbc.M605081200

Deshpande, 2009, A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses, J. Neurosci., 29, 4004, 10.1523/JNEUROSCI.5980-08.2009

Kabogo, 2008, β-amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices, Neurobiol. Aging

Li, 2009, Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake, Neuron, 62, 788, 10.1016/j.neuron.2009.05.012

Mattson, 1992, β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci., 12, 376, 10.1523/JNEUROSCI.12-02-00376.1992

Klein, 2002, Aβ toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets, Neurochem. Int., 41, 345, 10.1016/S0197-0186(02)00050-5

Gottlieb, 2006, Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia, Neurobiol. Dis., 23, 374, 10.1016/j.nbd.2006.03.017

Grynkiewicz, 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem., 260, 3440, 10.1016/S0021-9258(19)83641-4

Hajnóczky, 1995, Decoding of cytosolic calcium oscillations in the mitochondria, Cell, 82, 415, 10.1016/0092-8674(95)90430-1

Pozzo-Miller, 1994, Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists, Neuroscience, 63, 471, 10.1016/0306-4522(94)90544-4

Shankar, 2007, Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signalling pathway, J. Neurosci., 27, 2866, 10.1523/JNEUROSCI.4970-06.2007

Parameshwaran, 2007, Amyloid beta-peptide Aβ(1–42) but not Aβ(1–40) attenuates synaptic AMPA receptor function, Synapse, 61, 367, 10.1002/syn.20386

Sanz-Blasco, 2008, Mitochondrial Ca2+ overload underlies Aβ oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs, PLoS ONE, 3, e2718, 10.1371/journal.pone.0002718

De Lacoste, 1993, The role of cortical connectivity in Alzheimer's disease pathogenesis: a review and model system, Neurobiol. Aging, 14, 1, 10.1016/0197-4580(93)90015-4

Kluge, 1998, Tracing of the entorhinal–hippocampal pathway in vitro, Hippocampus, 8, 57, 10.1002/(SICI)1098-1063(1998)8:1<57::AID-HIPO6>3.0.CO;2-4

Szegedi, 2005, Divergent effects of Aβ 1-42 on ionotropic glutamate receptor-mediated responses in CA1 neurons in vivo, Brain Res., 1062, 120, 10.1016/j.brainres.2005.09.014

Blanchard, 2004, Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule, Proc. Natl. Acad. Sci. U.S.A., 101, 14326, 10.1073/pnas.0405941101

Tozaki, 2002, The inhibitory and facilitatory actions of amyloid-β peptides on nicotinic ACh receptors and AMPA receptors, Biochem. Biophys. Res. Commun., 294, 42, 10.1016/S0006-291X(02)00429-1

Atlante, 2001, Glutamate neurotoxicity, oxidative stress and mitochondria, FEBS Lett., 497, 1, 10.1016/S0014-5793(01)02437-1

Nicholls, 2000, Mitochondria and neuronal survival, Physiol. Rev., 80, 315, 10.1152/physrev.2000.80.1.315

Butterfield, 2003, The glutamatergic system and Alzheimer's disease: therapeutic implications, CNS Drugs, 17, 641, 10.2165/00023210-200317090-00004

Cacabelos, 1999, The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease, Int. J. Geriatr. Psych., 14, 3, 10.1002/(SICI)1099-1166(199901)14:1<3::AID-GPS897>3.0.CO;2-7

Francis, 2003, Glutamatergic systems in Alzheimer's disease, Int. J. Geriatr. Psych., 18, S15, 10.1002/gps.934

Mattson, 2003, Neuronal and glial calcium signaling in Alzheimer's disease, Cell Calcium, 34, 385, 10.1016/S0143-4160(03)00128-3

Hynd, 2004, Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease, Neurochem. Int., 45, 583, 10.1016/j.neuint.2004.03.007

Verkhratsky, 2007, NMDA Receptors in glia, Neuroscientist, 13, 28, 10.1177/1073858406294270

Matute, 2007, Excitotoxic damage to white matter, J. Anat., 210, 693, 10.1111/j.1469-7580.2007.00733.x

Bakiri, 2009, Glutamatergic signaling in the brain's white matter, Neuroscience, 158, 266, 10.1016/j.neuroscience.2008.01.015

Rodríguez, 2009, Astroglia in dementia and Alzheimer's disease, Cell Death Differ., 16, 378, 10.1038/cdd.2008.172

Heneka, 2009, Neuroglia in neurodegeneration, Brain Res. Rev.