Chuyển hóa amyloid-β trong các mô hình và bệnh nhân mắc bệnh Niemann-Pick C

Metabolic Brain Disease - Tập 27 - Trang 573-585 - 2012
Niklas Mattsson1,2, Maria Olsson1, Mikael K. Gustavsson1, Marko Kosicek3, Martina Malnar3, Jan-Eric Månsson1, Maria Blomqvist1, Johan Gobom1, Ulf Andreasson1, Gunnar Brinkmalm1, Charles Vite4, Silva Hecimovic3, Caroline Hastings5, Kaj Blennow1, Henrik Zetterberg1, Erik Portelius1
1Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2Clinical Neurochemistry Laboratory, V-huset, Sahlgrenska University Hospital/Mölndal, Gothenburg, Sweden
3Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
4School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
5Children’s Hospital & Research Center Oakland, Oakland, USA

Tóm tắt

Bệnh Niemann-Pick loại C (NPC) là một bệnh lyso-some thần kinh tiến triển, có sự thay đổi trong quá trình vận chuyển lipid tế bào. Chuyển hóa amyloid-β (Aβ) – trước đây chủ yếu được nghiên cứu trong bệnh Alzheimer – đã được đề xuất là bị thay đổi trong NPC. Chúng tôi đã thực hiện một đặc trưng chi tiết về các sản phẩm chuyển hóa từ protein tiền thân amyloid (APP) trong các mô hình NPC và bệnh nhân. Chúng tôi đã sử dụng nhiều công nghệ phân tích, bao gồm xét nghiệm miễn dịch và kết tủa miễn dịch sau đó là phổ khối (IP-MS) để đặc trưng hóa các peptide Aβ và các mảnh APP hòa tan (sAPP-α/β) trong môi trường tế bào từ các mô hình tế bào NPC được kích thích bằng hóa học (U18666A) và di truyền (NPC1−/−), cũng như dịch não tủy (CSF) từ mèo NPC và bệnh nhân người. Mẫu peptide Aβ và mảnh sAPP-α/β trong môi trường tế bào bị ảnh hưởng khác nhau bởi kiểu hình NPC do điều trị U18666A và kiểu gen NPC1−/−. Điều trị bằng U18666A đã làm tăng mức độ sAPP-α, AβX-40 và AβX-42 trong môi trường tiết ra và làm giảm mức sAPP-β, Aβ1-40 và Aβ1-42, trong khi IP-MS cho thấy mức tương đối của Aβ5-38 và Aβ5-40 gia tăng trong phản ứng với điều trị. Các tế bào NPC1−/− có mức sAPP-α và Aβ1-16 trong môi trường giảm, và mức sAPP-β tăng. Mèo NPC có sự phân phối Aβ peptide trong CSF bị thay đổi so với mèo bình thường. Mèo được điều trị bằng hợp chất có khả năng thay đổi bệnh 2-hydroxypropyl-β-cyclodextrin có mức Aβ peptide ngắn bao gồm Aβ1-16 gia tăng so với mèo không được điều trị. Bệnh nhân NPC nhận β-cyclodextrin có mức Aβ1-42, AβX-38, AβX-40, AβX-42 và sAPP-β trong CSF giảm dần theo thời gian, cũng như giảm các dấu hiệu tổn thương trục thần kinh tau và tau phosphoryl hóa. Chúng tôi kết luận rằng các mô hình NPC có chuyển hóa Aβ bị thay đổi, nhưng có sự khác biệt giữa các hệ thống thí nghiệm, cho thấy rằng sự mất chức năng NPC1, như trong các tế bào NPC1−/−, hoặc sự rối loạn chức năng NPC1, được thấy ở bệnh nhân và mèo NPC cũng như trong các tế bào điều trị bằng U18666A, có thể gây ra những tác động tinh tế nhưng khác biệt trên các con đường phân hủy APP. Những phát hiện ban đầu từ mèo NPC gợi ý rằng điều trị bằng cyclodextrin có thể có tác động đến các con đường xử lý APP. Các dấu hiệu sinh học Aβ trong CSF, sAPP và tau đã thay đổi một cách linh hoạt theo thời gian ở bệnh nhân NPC người.

Từ khóa

#Niemann-Pick type C #Amyloid-β #APP #tế bào #dịch não tủy #peptide #xét nghiệm miễn dịch #phổ khối

Tài liệu tham khảo

Auer IA, Schmidt ML, Lee VM, Curry B, Suzuki K, Shin RW, Pentchev PG, Carstea ED, Trojanowski JQ (1995) Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer’s disease. Acta Neuropathol 90(6):547–551 Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38(11 Pt 1):3751–3757 Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144 Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, Grundman M, Liu E, for the AABI (2012) Effect of immunotherapy with Bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 69(8):1002–1010 Bodovitz S, Klein WL (1996) Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 271(8):4436–4440 Boland B, Smith DA, Mooney D, Jung SS, Walsh DM, Platt FM (2010) Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. J Biol Chem 285(48):37415–37426 Borbon IA, Erickson RP (2011) Interactions of Npc1 and amyloid accumulation/deposition in the APP/PS1 mouse model of Alzheimer’s. J Appl Genet 52(2):213–218 Brinkmalm G, Portelius E, Ohrfelt A, Mattsson N, Persson R, Gustavsson MK, Vite CH, Gobom J, Mansson JE, Nilsson J, Halim A, Larson G, Ruetschi U, Zetterberg H, Blennow K, Brinkmalm A (2012) An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid beta and amyloid precursor protein in human and cat cerebrospinal fluid. J Mass Spectrom 47(5):591–603 Burns M, Gaynor K, Olm V, Mercken M, LaFrancois J, Wang L, Mathews PM, Noble W, Matsuoka Y, Duff K (2003) Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. J Neurosci 23(13):5645–5649 Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, Mennerick S, Holtzman DM (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58(1):42–51 Crestini A, Napolitano M, Piscopo P, Confaloni A, Bravo E (2006) Changes in cholesterol metabolism are associated with PS1 and PS2 gene regulation in SK-N-BE. J Mol Neurosci 30(3):311–322 Davis W Jr (2008) The cholesterol transport inhibitor U18666a regulates amyloid precursor protein metabolism and trafficking in N2aAPP “Swedish” cells. Curr Alzheimer Res 5(5):448–456 Erickson RP, Larson-Thome K, Weberg L, Szybinska A, Mossakowska M, Styczynska M, Barcikowska M, Kuznicki J (2008) Variation in NPC1, the gene encoding Niemann-Pick C1, a protein involved in intracellular cholesterol transport, is associated with Alzheimer disease and/or aging in the Polish population. Neurosci Lett 447(2–3):153–157 Grimm MO, Grimm HS, Hartmann T (2007) Amyloid beta as a regulator of lipid homeostasis. Trends Mol Med 13(8):337–344 Hansson O, Zetterberg H, Vanmechelen E, Vanderstichele H, Andreasson U, Londos E, Wallin A, Minthon L, Blennow K (2010) Evaluation of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 31(3):357–367 Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185 Hecimovic S, Wang J, Dolios G, Martinez M, Wang R, Goate AM (2004) Mutations in APP have independent effects on Abeta and CTFgamma generation. Neurobiol Dis 17(2):205–218 Holmes O, Paturi S, Ye W, Wolfe MS, Selkoe DJ (2012) Effects of membrane lipids on the activity and processivity of purified gamma-secretase. Biochemistry 51(17):3565–3575 Hook V, Toneff T, Bogyo M, Greenbaum D, Medzihradszky KF, Neveu J, Lane W, Hook G, Reisine T (2005) Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer’s disease. Biol Chem 386(9):931–940 Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164(3):975–985 Kagedal K, Kim WS, Appelqvist H, Chan S, Cheng D, Agholme L, Barnham K, McCann H, Halliday G, Garner B (2010) Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer’s disease. Biochim Biophys Acta 1801(8):831–838 Kodam A, Maulik M, Peake K, Amritraj A, Vetrivel KS, Thinakaran G, Vance JE, Kar S (2010) Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemann-Pick type C1-deficient mouse brains. Glia 58(11):1267–1281 Koh CH, Whiteman M, Li QX, Halliwell B, Jenner AM, Wong BS, Laughton KM, Wenk M, Masters CL, Beart PM, Bernard O, Cheung NS (2006) Chronic exposure to U18666A is associated with oxidative stress in cultured murine cortical neurons. J Neurochem 98(4):1278–1289 Kosicek M, Malnar M, Goate A, Hecimovic S (2010) Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts. Biochem Biophys Res Commun 393(3):404–409 Lange Y, Ye J, Rigney M, Steck T (2000) Cholesterol movement in Niemann-Pick type C cells and in cells treated with amphiphiles. J Biol Chem 275(23):17468–17475 Malnar M, Kosicek M, Mitterreiter S, Omerbasic D, Lichtenthaler SF, Goate A, Hecimovic S (2010) Niemann-Pick type C cells show cholesterol dependent decrease of APP expression at the cell surface and its increased processing through the beta-secretase pathway. Biochim Biophys Acta 1802(7–8):682–691 Mattsson N, Zetterberg H, Bianconi S, Yanjanin NM, Fu R, Mansson JE, Porter FD, Blennow K (2011) Gamma-secretase-dependent amyloid-beta is increased in Niemann-Pick type C: a cross-sectional study. Neurology 76(4):366–372 Mattsson N, Zetterberg H, Bianconi S, Yanjanin NM, Fu R, Mansson JE, Porter FD, Blennow K (2012) Miglustat treatment may reduce cerebrospinal fluid levels of the axonal degeneration marker tau in Niemann-Pick type C. JIMD Reports 3:45–52. doi:10.1007/8904_2011_47 Mattsson N, Portelius E, Rolstad S, Gustavsson M, Andreasson U, Stridsberg M, Wallin A, Blennow K, Zetterberg H (2012a) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30(4):767–778 Mattsson N, Rajendran L, Zetterberg H, Gustavsson M, Andreasson U, Olsson M, Brinkmalm G, Lundkvist J, Jacobson LH, Perrot L, Neumann U, Borghys H, Mercken M, Dhuyvetter D, Jeppsson F, Blennow K, Portelius E (2012b) BACE1 Inhibition induces a specific cerebrospinal fluid beta-amyloid pattern that identifies drug effects in the central nervous system. PLoS One 7(2):e31084 Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1(5):345–347 Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4(5):590–599 Olson L, Humpel C (2010) Growth factors and cytokines/chemokines as surrogate biomarkers in cerebrospinal fluid and blood for diagnosing Alzheimer’s disease and mild cognitive impairment. Exp Gerontol 45(1):41–46 Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B, Rosengren L, Vanmechelen E, Blennow K (2005) Simultaneous measurement of beta-amyloid(1–42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51(2):336–345 Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6(9):765–772 Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F, on behalf of the NPCGWG (2012) Recommendations for the diagnosis and management of Niemann-Pick disease type C: An update. Mol Genet Metab 106(3):330–344 Peake KB, Vance JE (2012) Normalization of cholesterol homeostasis by 2-hydroxypropyl-beta-cyclodextrin in neurons and glia from Niemann-Pick C1-deficient mice. J Biol Chem 287(12):9290–9298 Pineda M, Wraith JE, Mengel E, Sedel F, Hwu WL, Rohrbach M, Bembi B, Walterfang M, Korenke GC, Marquardt T, Luzy C, Giorgino R, Patterson MC (2009) Miglustat in patients with Niemann-Pick disease Type C (NP-C): a multicenter observational retrospective cohort study. Mol Genet Metab 98(3):243–249 Portelius E, Westman-Brinkmalm A, Zetterberg H, Blennow K (2006) Determination of beta-Amyloid Peptide Signatures in Cerebrospinal Fluid Using Immunoprecipitation-Mass Spectrometry. J Proteome Res 5(4):1010–1016 Portelius E, Tran AJ, Andreasson U, Persson R, Brinkmalm G, Zetterberg H, Blennow K, Westman-Brinkmalm A (2007) Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J Proteome Res 6(11):4433–4439 Portelius E, Van Broeck B, Andreasson U, Gustavsson MK, Mercken M, Zetterberg H, Borghys H, Blennow K (2010) Acute effect on the Abeta isoform pattern in CSF in response to gamma-secretase modulator and inhibitor treatment in dogs. J Alzheimers Dis 21(3):1005–1012 Portelius E, Mattsson N, Andreasson U, Blennow K, Zetterberg H (2011a) Novel abeta isoforms in Alzheimer’s disease - their role in diagnosis and treatment. Curr Pharm Des 17(25):2594–2602 Portelius E, Price E, Brinkmalm G, Stiteler M, Olsson M, Persson R, Westman-Brinkmalm A, Zetterberg H, Simon AJ, Blennow K (2011b) A novel pathway for amyloid precursor protein processing. Neurobiol Aging 32(6):1090–1098 Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K, Pappolla MA (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7(4):321–331 Roff CF, Goldin E, Comly ME, Cooney A, Brown A, Vanier MT, Miller SP, Brady RO, Pentchev PG (1991) Type C Niemann-Pick disease: use of hydrophobic amines to study defective cholesterol transport. Dev Neurosci 13(4–5):315–319 Rosen C, Andreasson U, Mattsson N, Marcusson J, Minthon L, Andreasen N, Blennow K, Zetterberg H (2012) Cerebrospinal fluid profiles of amyloid beta-related biomarkers in Alzheimer’s disease. Neuromolecular Med 14(1):65–73 Rosenbaum AI, Maxfield FR (2011) Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 116(5):789–795 Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22(5):1679–1689 Saito Y, Suzuki K, Nanba E, Yamamoto T, Ohno K, Murayama S (2002) Niemann-Pick type C disease: accelerated neurofibrillary tangle formation and amyloid beta deposition associated with apolipoprotein E epsilon 4 homozygosity. Ann Neurol 52(3):351–355 Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498 Sidera C, Parsons R, Austen B (2005) The regulation of beta-secretase by cholesterol and statins in Alzheimer’s disease. J Neurol Sci 229–230:269–273 Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95(11):6460–6464 Somers KL, Royals MA, Carstea ED, Rafi MA, Wenger DA, Thrall MA (2003) Mutation analysis of feline Niemann-Pick C1 disease. Mol Genet Metab 79(2):99–103 Stachel SJ, Coburn CA, Steele TG, Jones KG, Loutzenhiser EF, Gregro AR, Rajapakse HA, Lai MT, Crouthamel MC, Xu M, Tugusheva K, Lineberger JE, Pietrak BL, Espeseth AS, Shi XP, Chen-Dodson E, Holloway MK, Munshi S, Simon AJ, Kuo L, Vacca JP (2004) Structure-based design of potent and selective cell-permeable inhibitors of human beta-secretase (BACE-1). J Med Chem 47(26):6447–6450 Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941 Takeda K, Araki W, Akiyama H, Tabira T (2004) Amino-truncated amyloid beta-peptide (Abeta5-40/42) produced from caspase-cleaved amyloid precursor protein is deposited in Alzheimer’s disease brain. FASEB J 18(14):1755–1757 Vite CH, Ding W, Bryan C, O’Donnell P, Cullen K, Aleman D, Haskins ME, Van Winkle T (2008) Clinical, electrophysiological, and serum biochemical measures of progressive neurological and hepatic dysfunction in feline Niemann-Pick type C disease. Pediatr Res 64(5):544–549 Ward S, O’Donnell P, Fernandez S, Vite CH (2010) 2-hydroxypropyl-beta-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann-Pick type C disease. Pediatr Res 68(1):52–56 Yamazaki T, Chang TY, Haass C, Ihara Y (2001) Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann-pick type C cells. J Biol Chem 276(6):4454–4460