Amplitude Death, Bifurcations, and Basins of Attraction of a Planar Self-Sustained Oscillator with Delayed Feedback
Tóm tắt
Từ khóa
Tài liệu tham khảo
T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)
R. Sipahi, S. Niculescu, C.T. Abdallah, W. Michiels, K. Gu, Stability and Stabilization of Systems with Time Delay. IEEE Cont. Syst. Magazine 31(1), 38–65 (2011)
M. Lakshmanan, D. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems (Springer, Berlin, 2010)
R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. IEEE J. Quant. Elect. 16(3), 347–355 (1980)
K. Ikeda, K. Kondo, O. Akimoto, Successive Higher-Harmonic Bifurcations in Systems with Delayed Feedback. Phys. Rev. Lett. 49, 1467–1470 (1982)
E.C. Zimmermann, M. Schell, J. Ross, Stabilization of unstable states and oscillatory phenomena in an illuminated thermochemical system: Theory and experiment. J. Chem. Phys. 81(3), 1327–1336 (1984)
D.V.R. Reddy, A. Sen, G.L. Johnston, Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D: Nonlinear Phenomena 144(3), 335–357 (2000)
A.G. Vladimirov, D. Turaev, Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72, (2005)
S. Yanchuk, G. Giacomelli, Pattern Formation in Systems with Multiple Delayed Feedbacks. Phys. Rev. Lett. 112, 174103 (2014)
A. Keane, B. Krauskopf, C.M. Postlethwaite, Climate models with delay differential equations. Chaos: An Interdisciplinary J Nonlinear Sci 27(11), 114309 (2017)
J.W. Wu, H.B. Bao, Nonlinear Dynamics in Semiconductor Quantum Dot Laser Subject to Double Delayed Feedback: Numerical Analysis. Braz. J. Phys. 50, 594–601 (2020)
H.G. Schuster, P. Wagner, Mutual Entrainment of Two Limit Cycle Oscillators with Time Delayed Coupling. Prog. Theor. Phys. 81, 939 (1989)
J. Weiner, R. Holz, F.W. Schneider, K. Bar-Eli, Mutually coupled oscillators with time delay. J. Phys. Chem. 96(22), 8915–8919 (1992)
M. Dhamala, V.K. Jirsa, M. Ding, Enhancement of Neural Synchrony by Time Delay. Phys. Rev. Lett. 92, 074104 (2004)
A.S. Landsman, I.B. Schwartz, Complete chaotic synchronization in mutually coupled time-delay systems. Phys. Rev. E 75, (2007)
O.D Huys, R. Vicente, J. Danckaert, I, Fischer, Amplitude and phase effects on the synchronization of delay-coupled oscillators. Chaos: An Interdisciplinary J. Nonlinear Sci. 20(4), 043127 (2010)
C. Bonatto, B. Kelleher, G. Huyet, S.P. Hegarty, Transition from unidirectional to delayed bidirectional coupling in optically coupled semiconductor lasers. Phys. Rev. E 85, (2012)
T. Erneux, D. Lenstra, Synchronization of Mutually Delay-Coupled Quantum Cascade Lasers with Distinct Pump Strengths. Photonics 6(4), 125 (2019)
E. Niebur, H. G. Schuster, D. M. Kammen. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67, 2753–2756 (1991)
U. Ernst, K. Pawelzik, T. Geisel, Synchronization Induced by Temporal Delays in Pulse-Coupled Oscillators. Phys. Rev. Lett. 74, 1570–1573 (1995)
M.K.S. Yeung, S.H. Strogatz, Time Delay in the Kuramoto Model of Coupled Oscillators. Phys. Rev. Lett. 82, 648–651 (1999)
F.M. Atay, J. Jost, A. Wende, Delays, Connection Topology, and Synchronization of Coupled Chaotic Maps. Phys. Rev. Lett. 92, (2004)
O.D. Huys, R. Vicente, T. Erneux, J. Danckaert, I, Fischer, Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos: An Interdisciplinary J. Nonlinear Sci. 18(3), 037116 (2008)
A.A. Selivanov, J. Lehnert, T. Dahms, P. Hövel, A.L. Fradkov, E. Schöll, Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85, (2012)
M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)
K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)
D. Kane, A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, London, 2005)
S. Kim, S.H. Park, C.S. Ryu, Multistability in Coupled Oscillator Systems with Time Delay. Phys. Rev. Lett. 79, 2911–2914 (1997)
D.V. Ramana Reddy, A. Sen, G.L. Johnston, Time Delay Induced Death in Coupled Limit Cycle Oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)
D.W. Sukow, T. Heil, I. Fischer, A. Gavrielides, A. Hohl-AbiChedid, W. Elsäßer, Picosecond intensity statistics of semiconductor lasers operating in the low-frequency fluctuation regime. Phys. Rev. A 60, 667–673 (1999)
C. Masoller, Anticipation in the Synchronization of Chaotic Semiconductor Lasers with Optical Feedback. Phys. Rev. Lett. 86, 2782–2785 (2001)
T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides, Dynamics of Semiconductor Lasers Subject to Delayed Optical Feedback: The Short Cavity Regime. Phys. Rev. Lett. 87, (2001)
O.E. Omel’chenko, Y.L. Maistrenko, P.A. Tass, Chimera States: The Natural Link Between Coherence and Incoherence. Phys. Rev. Lett. 100, (2008)
G.C. Sethia, A. Sen, F.M. Atay, Clustered Chimera States in Delay-Coupled Oscillator Systems. Phys. Rev. Lett. 100, 144102 (2008)
B. Kelleher, C. Bonatto, P. Skoda, S.P. Hegarty, G. Huyet, Excitation regeneration in delay-coupled oscillators. Phys. Rev. E 81, (2010)
T.K.D. Peron, F.A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling. Phys. Rev. E 86, (2012)
M. Marconi, J. Javaloyes, S. Barland, S. Balle, M. Giudici, Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays. Nature Photon. 9, 450–455 (2015)
S. Yanchuk, S. Ruschel, J. Sieber, M. Wolfrum, Temporal Dissipative Solitons in Time-Delay Feedback Systems. Phys. Rev. Lett. 123, (2019)
S. Terrien, V.A. Pammi, N.G.R. Broderick, R. Braive, G. Beaudoin, I. Sagnes, B. Krauskopf, S. Barbay, Equalization of pulse timings in an excitable microlaser system with delay. Phys. Rev. Research 2, (2020)
G. Saxena, A. Prasad, R. Ramaswamy, Amplitude death: The emergence of stationarity in coupled nonlinear systems. Phys Rep 521(5), 205–228 (2012). Amplitude Death: The Emergence of Stationarity in Coupled Nonlinear Systems
A. Koseska, E. Volkov, J. Kurths, Oscillation quenching mechanisms: Amplitude vs. oscillation death. Phys Rep 531(4), 173–199 (2013). Oscillation quenching mechanisms: Amplitude vs. oscillation death
R. Herrero, M. Figueras, J. Rius, F. Pi, G. Orriols, Experimental Observation of the Amplitude Death Effect in Two Coupled Nonlinear Oscillators. Phys. Rev. Lett. 84, 5312–5315 (2000)
F.M. Atay, Distributed Delays Facilitate Amplitude Death of Coupled Oscillators. Phys. Rev. Lett. 91, (2003)
R. Dodla, A. Sen, G.L. Johnston, Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators. Phys. Rev. E 69, 056217 (2004)
K. Konishi, K. Senda, H. Kokame, Amplitude death in time-delay nonlinear oscillators coupled by diffusive connections. Phys. Rev. E 78, 056216 (2008)
A. Prasad, M. Dhamala, B.M. Adhikari, R. Ramaswamy, Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010)
J.M. Höfener, G.C. Sethia, T. Gross, Amplitude death in networks of delay-coupled delay oscillators. Philosophical Transactions of the Royal Society A: Mathematical, Phys Eng Sci 371(1999), 20120462 (2013)
T. Biwa, S. Tozuka, T. Yazaki, Amplitude Death in Coupled Thermoacoustic Oscillators. Phys. Rev. Applied 3, (2015)
H. Teki, K. Konishi, N. Hara, Amplitude death in a pair of one-dimensional complex Ginzburg-Landau systems coupled by diffusive connections. Phys. Rev. E 95, (2017)
S.R. Huddy, Using critical curves to compute master stability islands for amplitude death in networks of delay-coupled oscillators. Chaos: An Interdisciplinary J. Nonlinear Sci. 30(1), 013118 (2020)
S. Rakshit, B. Bera, S. Majhi, C. Hens, D. Ghosh, Basin stability measure of different steady states in coupled oscillators. Scientific Reports 7, 45909 (2017)
S. Majhi, B.K. Bera, S.K. Bhowmick, D. Ghosh, Restoration of oscillation in network of oscillators in presence of direct and indirect interactions. Phys. Lett. A 380(43), 3617–3624 (2016)
K. Green, Stability near threshold in a semiconductor laser subject to optical feedback: A bifurcation analysis of the Lang-Kobayashi equations. Phys. Rev. E 79, (2009)
N. Zhao, Z. Sun, W. Xu, Inducing amplitude death via pinning control. Eur. Phys. J. B 92, 179 (2019)
S. Majhi, D. Ghosh, Amplitude death and resurgence of oscillation in networks of mobile oscillators. Europhys. Lett. 118(4), 40002 (2017)
W.T. Prants, C. Bonatto, Triple point of synchronization, phase singularity, and excitability along the transition between unbounded and bounded phase oscillations in a forced nonlinear oscillator. Phys. Rev. E 103, (2021)
T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides, Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms. Phys. Rev. E 67, (2003)
H. Erzgräber, D. Lenstra, B. Krauskopf, E. Wille, M. Peil, I. Fischer, W. Elsäer, Mutually delay-coupled semiconductor lasers: Mode bifurcation scenarios. Optics Communications 255(4), 286–296 (2005)
E. Panteley, A. Lora, A. El-Ati, Practical dynamic consensus of Stuart-Landau oscillators over heterogeneous networks. Int. J. Cont. 93(2), 261–273 (2020)
J. Doyne Farmer. Chaotic attractors of an infinite-dimensional dynamical system. Physica D: Nonlinear Phenomena 4(3), 366–393 (1982)
F. Kuwashima, I. Kitazima, H. Iwasawa, Theory of Chaotic Dynamics on Class A Laser with Optical Delayed Feedback. Japanese J Appl Phys 40, Part 1, No. 2A, 601–608 (2001)
F. Kuwashima, H. Iwasawa, Chaotic Oscillations in Single-Mode Class A Laser with Long Optical Delayed Feedback. Japanese J. Appl. Phys. 46(4A), 1526–1527 (2007)
G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S. Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J, SpringThorpe. Quantum dot semiconductor lasers with optical feedback. physica status solidi (a) 201(2), 345–352 (2004)
K. Ludge, Nonlinear Laser Dynamics: From Quantum Dots to Cryptography (Wiley-VHC, Weinheim, 2012)
L. Lugiato, F. Pratti, M. Brambilla, Nonlinear Optical Systems (Cambridge University Press, Cambridge, 2015)
D. Pieroux, P. Mandel, Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity. Phys. Rev. E 67, 056213 (2003)
B. Lingnau, K. Shortiss, F. Dubois, F.H. Peters, B. Kelleher, Universal generation of devil’s staircases near Hopf bifurcations via modulated forcing of nonlinear systems. Phys. Rev. E 102, (2020)
C. Mayol, R. Toral, H. Wio, Modulated class A laser: stochastic resonance in a limit-cycle potential system. Eur. Phys. J. B 91, 114 (2018)
Y. Tan, S. Zhang, S. Zhang, Y. Zhang, N. Liu, Response of microchip solid-state laser to external frequency-shifted feedback and its applications. Sci. Rep. 3, 2912 (2013)