Amplification of entangled states of squeezed light

Journal of Experimental and Theoretical Physics - Tập 105 - Trang 314-326 - 2007
V. N. Gorbachev1, A. I. Trubilko1
1Laboratory of Quantum Information and Computing, St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia

Tóm tắt

Two amplification schemes are considered for entangled squeezed states of light, including an Einstein-Podolsky-Rosen entangled state of continuous variables (EPR pair): propagation in a nonlinear medium and reflection from a cavity. Both schemes make use of a parametric process that can be implemented in a periodic nonlinear medium. The existence of an integral of motion makes it possible to amplify an entangled state of light while preserving the initial entanglement. To analyze the cavity-based scheme, a master equation is derived for the density matrix of the field inside the cavity. The feasibility of amplification that preserves entanglement of an EPR pair is demonstrated for this scheme.

Tài liệu tham khảo

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998); W. Dur, H. J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A 59, 169 (1999). P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997). A. M. Basharov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 151 (2002) [JETP Lett. 75, 123 (2002)]; Zh. Éksp. Teor. Fiz. 121, 1249 (2002) [JETP 94, 1070 (2002)]. M. Bourennane, M. Eibl, S. Gaertner, et al., Phys. Rev. Lett. 92, 107901 (2004). V. N. Gorbachev and A. I. Trubilko, Opt. Spektrosk. 84,970 (1998) [Opt. Spectrosc. 84, 879 (1998)]; Opt. Spektrosk. 89, 420 (2000) [Opt. Spectrosc. 89, 384 (2000)]; Pis’ma Zh. Éksp. Teor. Fiz. 77, 563 (2003) [JETP Lett. 77, 469 (2003)]. V. N. Gorbachev and A. I. Trubilko, Pis’ma Zh. Éksp. Teor. Fiz. 83, 213 (2006) [JETP Lett. 83, 179 (2006)]. A. Furusawa, J. L. Sorensen, S. L. Braunstein, et al., Science 282, 706 (1998). X. Li, Q. Pan, J. Jing, et al., quant-ph/0107068. B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, Phys. Rev. Lett. 80, 3483 (1998). C. M. Caves, Phys. Rev. D 26, 1817 (1982). M. I. Kolobov and I. V. Sokolov, Opt. Spektrosk. 63, 958 (1987) [Opt. Spectrosc. 63, 562 (1987)]. V. N. Gorbachev and A. I. Trubilko, Zh. Éksp. Teor. Fiz. 102, 1441 (1992) [Sov. Phys. JETP 75, 781 (1992)]. V. N. Gorbachev and A. I. Trubilko, Zh.Éksp. Teor. Fiz. 103, 1931 (1993) [Sov. Phys. JETP 76, 956 (1993)]. M. Paris, J. Opt. B: Quantum Semiclassic. Opt. 4, 442 (2002). D. Wilson, J. Lee, and M. S. Kim, quant-ph/0206197. A. S. Chirkin, V. V. Volkov, G. D. Laptev, and E. Yu. Morozov, Kvantovaya Élektron. (Moscow) 30, 847 (2000); A. V. Nikandrov and A. S. Chirkin, Pis’ma Zh. Éksp. Teor. Fiz. 76, 333 (2002) [JETP Lett. 76, 275 (2002)]; A. A. Novikov and A. S. Chirkin, Zh. Éksp. Teor. Fiz. 126, 1089 (2004) [JETP 99, 947 (2004)]. Yu. M. Golubev, Zh. Éksp. Teor. Fiz. 65, 466 (1973) [Sov. Phys. JETP 38, 228 (1974)]; V. N. Gorbachev and A. I. Zhiliba, J. Phys. A 33, 371 (2000). I. R. Senitzky, Phys. Rev. 119, 670 (1960). C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985). C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986). A. M. Basharov, Zh. Éksp. Teor. Fiz. 111, 25 (1997) [JETP 84, 13 (1997)]; Izv. Ross. Akad. Nauk, Ser. Fiz. 62, 438 (1998). H. J. Carmichael, A. S. Lane, and D. F. Walls, Phys. Rev. Lett. 58, 2539 (1987); H. Ritsch and P. Zoller, Opt. Commun. 64, 523 (1987). A. M. Basharov, Zh. Éksp. Teor. Fiz. 108, 842 (1995) [JETP 81, 459 (1995)]. J. Bergou and D. Zhao, Phys. Rev. A 52, 1550 (1995); P. Galatola, L. A. Lugiato, M. Porreca, and P. Tombesi, Opt. Commun. 81, 175 (1991). S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80,869 (1998). P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84, 3482 (1998). C. Viviescas and G. Hackenbroich, Phys. Rev. A 67, 013805 (2003). J. Gea-Banacloche, N. Lu, L. M. Pedrotti, et al., Phys. Rev. A 41, 369 (1990). W. K. Wotters and W. H. Zurek, Nature 299, 802 (1982). L.-M. Duan, M. S. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).