Amphiphilic Copolymers of Different Structure Based on Poly(ethylene glycol): Synthesis, Physico-Chemical Properties, and Cytotoxicity

Polymer Science Series C - Tập 64 - Trang 135-143 - 2022
M. Yu. Zaremski1, N. S. Melik-Nubarov1, I. D. Grozdova1, E. E. Aliev1, S. A. Rumyantsev1
1Department of Chemistry, Moscow State University, Moscow, Russia

Tóm tắt

New procedures for the preparation of grafted and branched amphiphilic copolymers based on poly(ethylene glycol) have been suggested. Radical polymerization with TEMPO and sulfuric acid has afforded controlled synthesis of grafted copolymers of methyl methacrylate with poly(ethylene glycol) methacrylate. Radical copolymerization of allyl acetate with poly(ethylene glycol) acrylate in the presence of divinylbenzene has given branched copolymers. It has been shown that these copolymers can form micelles in aqueous medium; cytotoxicity of the copolymers and the ability to suppress the resistance of human cancer cells NCI/ADR-RES have been investigated.

Tài liệu tham khảo

J. H. Park, M. Ye, and K. Park, Molecules 10, 146 (2005).

I. R. Schmolka, J. Am. Oil Soc. 54 (3), 110 (1977).

X. Liu, H. Xiong, C. Xu, J. Yao, X. Zhu, J. Zhou, and J. Yao, Polym. Chem. 9, 1827 (2018).

D. N. Pavlov, T. Y. Dorodnykh, O. V. Zaborova, and N. S. Melik-Nubarov, Polym. Sci., Ser. A 51 (3), 295 (2009).

P. Elamanchili, C. McEachern, and H. Burt, J. Pharm. Sci. 98 (3), 945 (2009).

T. V. Demina, O. A. Budkina, G. A. Badun, N. S. Melik-Nubarov, H. Frey, S. S. Müller, J. Nieberle, and I. D. Grozdova, Biomacromolecules 15, 2672 (2014).

C. Zalipsky, A. Gilon, and A. Zilkha, J. Macromol. Sci., Part A 21, 839 (1984).

D. A. Shipp, J.-L. Wang, and K. Matyjaszewski, Macromolecules 31, 8005 (1998).

K. Jankova, X. Chen, J. Kops, and W. Batsberg, Macromolecules 31, 538 (1998).

A. Zhirnov, E. Nam, G. Badun, A. Ezhov, N. Melik-Nubarov, and I. Grozdova, Pharm. Res. 35, 205 (2018).

T. V. Demina, O. A. Budkina, G. A. Badun, N. S. Melik-Nubarov, I. D. Grozdova, H. Frey, S. S. Müller, and J. Nieberle, Biomacromolecules 15, 2672 (2014).

B. Lessard and M. Maric, Macromolecules 41 (21), 7870 (2008).

J. Nicolas, P. Couvreur, and B. Charleux, Macromolecules 41 (11), 3758 (2008).

M. Yu. Zaremski and N. S. Melik-Nubarov, Polym. Sci., Ser. C 63 (2), 126 (2021).

M. Yu. Zaremski and V. V. Odintsova, Polym. Sci., Ser. C 63 (1), 11 (2021).

M. Yu. Zaremski, E. E. Aliev, E. S. Garina, and N. S. Melik-Nubarov, Mendeleev Commun. 30, 627 (2020).

M. M. Ali and H. D. H. Stöver, Macromolecules 37, 5219 (2004).

A. J. D. Magenau, Y. Kwak, K. Schröder, and K. Matyjaszewski, ACS Macro Lett. 1 (4), 508 (2012).

N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark, and A. Titterton, Polymer 41, 6027 (2000).

S. V. Kurmaz, M. L. Bubnova, E. O. Perepelitsina, and G. A. Estrina, Polym. Sci., Ser. A 48, 696 (2006).

N. V. Fadeeva, S. V. Korma, E. I. Knerel’man, G. I. Davydova, V. I. Torbov, and N. N. Dremova, Izv. RAN., Ser. Khim., No. 8, 2089 (2016).

N. M. Smeets, Eur. Polym. J. 49, 2528 (2013).

I. M. Le-Deygen, O. E. Musatova, V. N. Orlov, N. S. Melik-Nubarov, and I. D. Grozdova, Biomacromolecules 22 (2), 681 (2021).

M. V. Kitaeva, N. S. Melik-Nubarov, F. M. Menger, and A. A. Yaroslavov, Langmuir 20 (16), 6575 (2004).