Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity
Tóm tắt
The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO2, 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO2, 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H2O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H2O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H2O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H2O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H2O pressure (
$${P}_{\text {H}_2{\rm O}}$$
), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and
$$f_{\text {O}_2}$$
:
$$ P_{\text{H}_{2}{\rm O}}({\rm MPa})=\left[{\frac{{\rm Mg\#}}{52.7}}-0.014 * \Updelta {\rm NNO}\right]^{15.12} $$
This barometer gives a minimum
$${P}_{\text{H}_{2}{\rm O}}$$
recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H2O pressures (500–900 MPa) and high pre-eruptive magmatic H2O contents (10–14 wt% H2O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil (2010).
Tài liệu tham khảo
Allen JC, Boettcher AL (1983) The stability of amphibole in andesite and basalt at high-pressures. Am Mineral 68(3-4):307–314
Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Miner Petrol 157:541–558. doi:10.1007/s00410-008-0351-8
Anderson AT (1974) Evidence for a picritic, volatile-rich magma beneatch Mt. Shasta, CA. J Petrol 15(2):243–267
Anderson AT (1980) Significance of hornblende in calc-alkaline andesites and basalts. Am Mineral 65(9–10):837–851
Armstrong JT (1995) CITZAF—A package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4(3):177–200
Ayers JC, Brenan JB, Watson EB, Wark DA, Minarik WG (1992) A new capsule technique for hydrothermal experiments using the piston-cylinder apparatus. Am Mineral 77(9–10):1080–1086
Baker MB, Grove TL, Price R (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Miner Petrol 118:111–129. doi:10.1007/BF01052863
Barclay J, Carmichael I (2004) A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure-temperature window of eruptibility. J Petrol 45(3):485–506. doi:10.1093/petrology/egg091
Barclay J, Rutherford MJ, Carroll MR, Murphy MD, Devine JD, Gardner J, Sparks RSJ (1998) Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufriere Hills magma. Geophys Res Lett 25:3437–3440. doi:10.1029/98GL00856
Benne D, Behrens H (2003) Water solubility in haplobasaltic melts. Eur J Mineral 15:803–814. doi:10.1127/0935-1221/2003/0015-0803
Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87(11-12):1717–1726
Blatter DL, Carmichael ISE (1998) Plagioclase-free andesites from Zitácuaro (Michoacán), Mexico: petrology and experimental constraints. Contrib Miner Petrol 132:121–138. doi:10.1007/s004100050411
Blatter DL, Carmichael ISE (2001) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin. Geochim Cosmochim Acta 65:4043–4065. doi:10.1016/S0016-7037(01)00708-6
Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80. doi:10.1038/nature05100
Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of c-o-h fluids in andesitic melt at t = 1100–1300 degrees c and p = 200 and 500 mpa. Chem Geol 229:125–143
Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1,750 °C. J Geophys Res 65:741–748. doi:10.1029/JZ065i002p00741
Carmichael I (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contrib Miner Petrol 143:641–663. doi:10.1007/s00410-002-0370-9
Cawthorn RG, Ohara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329
Davidson J, Turner S, Handley H, MacPherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–+. doi:10.1130/G23637A.1
Eggler DH (1972) Amphibole stability in H2O-undersaturated calc-alkaline melts. Earth Planet Sci Lett 15:28–+. doi:10.1016/0012-821X(72)90025-8
Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. AGU Monograph 138(138):107–134
Grove TL, Donnelly-Nolan JM (1986) The evolution of young silicic lavas at medicine lake volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contrib Miner Petrol 92:281–302. doi:10.1007/BF00572157
Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of glass mountain, medicine lake volcano, N. California. Contrib Miner Petrol 127:205–223. doi:10.1007/s004100050276
Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Miner Petrol 142:375–396
Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533. doi:10.1007/s00410-003-0448-z
Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Miner Petrol 148:542–565. doi:10.1007/s00410-004-0619-6
Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Ann Rev Earth Planet Sci 40:413–439
Hamilton DL, Burnham CW, Osborn EF (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5(1):21–39
Hammarstrom JM, Zen EA (1986) Aluminum in Hornblende—an empirical igneous geobarometer. Am Mineral 71(11–12):1297–1313
Helz RT (1973) Phase relations of basalts in their melting range at \({\rm P}_{H_2O} = 5\) kbar as a function of oxygen fugacity .1. Mafic phases. J Petrol 14(2):249–302
Helz RT (1976) Phase relations of basalts in their melting ranges at \({\rm P}_{H_2O} = 5\) kbar. 2. Melt compositions. J Petrol 17(2):139–193
Hidalgo PJ, Rooney TO (2010) Crystal fractionation processes at Baru volcano from the deep to shallow crust. Geochem Geophys Geosys 11. doi:10.1029/2010GC003262
Holloway JR, Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13(1):1–&
Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to long valley caldera (California) volcanic rocks. Geology 17:837–841. doi:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
Kratzmann DJ, Carey S, Scasso RA, Naranjo JA (2010) Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. Contrib Miner Petrol 159:237–264. doi:10.1007/s00410-009-0426-1
Kushiro I (1969) System Forsterite-Diopside-Silica with and without water at high-pressures. Am J Sci 267(Suppl. I):269–294
Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Miner Petrol 159:475–492. doi:10.1007/s00410-009-0436-z
Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82(9–10):1019–1037
Medard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Miner Petrol 155(4):417–432. doi:10.1007/s00410-007-0250-4
Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Miner Petrol 130:304–319. doi:10.1007/s004100050367
Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141:643–658. doi:10.1007/s004100100266
Mysen BO (2007) The solution behavior of h2o in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochim Cosmochim Acta 71:1820–1834. doi:10.1016/j.gca.2007.01.007
Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604
Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase—melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-an plagioclase. Contrib Miner Petrol 118:420–432. doi:10.1007/s004100050024
Pichavant M, MacDonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Miner Petrol 154:535–558. doi:10.1007/s00410-007-0208-6
Pownceby MI, O’Neill HSC (1994) Thermodynamic data from redox reactions at high temperatures. IV. Calibration of the Re-ReO2 oxygen buffer from EMF and NiO+Ni-Pd redox sensor measurements. Contrib Miner Petrol 118:130–137. doi:10.1007/BF01052864
Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 pinatubo dacite. J Petrol 44:2203–2241. doi:10.1093/petrology/egg075
Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Miner Petrol 160:45–66. doi:10.1007/s00410-009-0465-7
Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Miner Petrol 112:101–118. doi:10.1007/BF00310958
Ruscitto DM, Wallace PJ, Kent AJR (2011) Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites. Contrib Miner Petrol 162:109–132. doi:10.1007/s00410-010-0587-y
Rutherford MJ, Devine JD (1988) The May 18, 1980, eruption of Mount St. Helens 3. Stability and chemistry of amphibole in the magma chamber. J Geophys Res 93:11,949–11,959. doi:10.1029/JB093iB10p11949
Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110:304–310. doi:10.1007/BF00310745
Schuessler JA, Botcharnikov RE, Behrens H, Misiti V, Freda C (2008) Oxidation state of iron in hydrous phono-tephritic melts. Am Mineral 93:1493–1504. doi:10.2138/am.2008.2795
Sherrod DR, Scott WE, Stauffer PH (eds) (2008) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. USGS professional paper 1750
Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113:143–166. doi:10.1007/BF00283225
Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from 4 subduction-related volcanoes. Earth Planet Sci Lett 117(3–4):619–635
Tiepolo M, Tribuzio R, Langone A (2011) High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello Hornblendites (Central Alps, Italy). J Petrol 52(5):1011–1045. doi:10.1093/petrology/egr016
Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane Fracture Zone: 22° 25° N, mid-Atlantic ridge. Contrib Miner Petrol 96:121–139. doi:10.1007/BF00375227
Ulmer, GC (eds) (1971) Research techniques for high pressure and high temperature. Springer, New York
Zucca JJ, Fuis GS, Milkereit B, Mooney WD, Catchings RD (1986) Crustal structure of northeastern California. J Geophys Res 91:7359–7382. doi:10.1029/JB091iB07p07359