Phương pháp miễn dịch điện hóa sandwich bằng amperometric để xác định kháng nguyên phôi ung thư với điện cực carbon thủy tinh được biến tính bằng các hạt nano iridium, polydopamine và oxit graphene khử

Microchimica Acta - Tập 184 - Trang 169-175 - 2016
Luyang Miao1, Lei Jiao1, Juan Zhang1, He Li1
1School of Chemistry and Chemical Engineering, and School of Biological Science and Technology, University of Jinan, Jinan 250022, China

Tóm tắt

Các tác giả mô tả một phương pháp xét nghiệm miễn dịch điện hóa dạng sandwich để xác định nhạy kháng nguyên phôi ung thư (CEA). Phương pháp này dựa trên việc sử dụng các hạt nano iridium (Ir NPs) hoạt động như bộ khuếch đại tín hiệu điện hóa trên bề mặt của điện cực carbon thủy tinh. Đầu tiên, oxit graphene khử polydopamine (PDA-rGO) được sử dụng để cố định kháng thể chính (Ab1) chống lại CEA. Tiếp theo, các hạt Ir-NPs được sử dụng như một chất hỗ trợ cho việc cố định kháng thể thứ cấp (Ab2) để cung cấp nhãn tín hiệu. Diện tích bề mặt lớn của PDA-rGO và khả năng cảm biến H2O2 điện oxy hóa xuất sắc của Ir NPs dẫn đến một xét nghiệm nhạy cho CEA. Phương pháp này hoạt động tốt nhất ở điện áp làm việc −0.6 V (so với SCE), có khoảng tuyến tính từ 0.5 pg⋅mL−1 đến 5 ng·mL−1, và giới hạn phát hiện thấp nhất là 0.23 pg⋅mL−1. Cảm biến miễn dịch hiển thị khả năng tái sản xuất và ổn định thỏa mãn, do đó cho thấy một chiến lược xét nghiệm miễn dịch đáng tin cậy cho các dấu hiệu của khối u. Phương pháp này đã được áp dụng để xác định CEA trong các mẫu huyết thanh có bổ sung.

Từ khóa

#kháng nguyên phôi ung thư #miễn dịch điện hóa #hạt nano iridium #carbon thủy tinh #oxit graphene khử #cảm biến miễn dịch

Tài liệu tham khảo

Letilovic T, Vrhovac R, Verstovsek R, Jaksic R, Ferrajoli A (2006) Role of angiogenesis in chronic lymphocytic leukemia. Cancer 107(11):925–934 Lin JH, Zhang HH, Niu SY (2015) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182(3–4):719–726 Xu TS, Li XY, Zhao HX, Li XG, Zhang HY (2015) Poly(o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen. Microchim Acta 182(15–16):2541–2549 Li C, Yang CY, Wu D, Li TQ, Yin YM, Li GX (2016) Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem Sci 7(5):3011–3016 Zhang Y, Lu F, Yan ZQ, Wu D, Ma HM, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182(7–8):1421–1429 Kuroki M, Yamaguchi A, Koga Y, Matsuoka Y (1983) Antigenic reactivities of purified preparations of carcinoembryonic antigen (CEA) and related normal antigens using four different radioimmunoassay systems for CEA. J Immunol Methods 60(1–2):221–233 Feng DX, Lu XC, Dong X, Ling YY, Zhang YZ (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180(9–10):767–774 Ilkhani H, Sarparast M, Noori A, Bathaie SZ, Mousavi MF (2015) Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens Bioelectron 74:491–497 Tang J, Tang DP, Niessner R, Chen G, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83(13):5407–5414 Tang J, Tang DP (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182(13–14):2077–2089 Sun XC, Lei C, Guo L, Zhou Y (2016) Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen. Microchim Acta 183(3):1107–1114 Ye RF, Zhu CZ, Song Y, Liu Q, Ge XX, Yang X, Zhu MJ, Du D, Li H, Lin YH (2016) Bioinspired synthesis of all-in-one organic-inorganic hybrid Nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12(23):3094–3100 Wei Q, Zhao YF, Du B, Wu D, Cai YY, Mao KX, Li H, Xu CX (2011) Nanoporous PtRu alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR. Adv Funct Mater 21(21):4193–4198 Zhao Y, Zheng YQ, Kong RM, Xiao L, Qu FL (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388 Garcinuño B, Ojeda I, Moreno-Guzmán M, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2014) Amperometric immunosensor for the determination of ceruloplasmin in human serum and urine based on covalent binding to carbon nanotubes-modified screen-printed electrodes. Talanta 118:61–67 Gao ZD, Guan FF, Li CY, Liu HF, Song YY (2013) Signal-amplified platform for electrochemical immunosensor based on TiO2 nanotube arrays using a HRP tagged antibody-Au nanoparticles as probe. Biosens Bioelectron 41:771–775 Wang CC, Ding L, Qu FL (2013) Sensitive electrochemical immunosensor for platelet-derived growth factor in serum with electron transfer mediated by gold nanoparticles initiated silver enhancement. Measurement 46(1):279–283 Jiang LP, Han J, Li FY, Gao J, Li YY, Dong YH, Wei Q (2015) A sandwich-type electrochemical immunosensor based on multiple signal amplification for α-fetoprotein labeled by platinum hybrid multiwalled carbon nanotubes adhered copper oxide. Electrochim Acta 160:7–14 Yang ZH, Zhuo Y, Yuan R, Chai YQ (2015) An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron 69:321–327 Kerman K, Saito M, Tamiya E, Yamamura S, Takamura Y (2008) Nanomaterial-based electrochemical biosensors for medical applications. TrAC Trends Anal Chem 27(7):585–592 Zhao Y, Zheng YQ, Zhao CY, You JM, Qu FL (2015) Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron 71:200–206 Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249 Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF (2009) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and Multienzyme-particle amplification. ACS Nano 3(3):585–594 Huo X, Liu P, Zhu J, Liu X, Ju H (2016) Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag. Biosens Bioelectron 85:698–706 Ma X, Jia J, Cao R, Wang X, Fei H (2014) Histidine–iridium (III) coordination-based peptide Luminogenic cyclization and Cyclo-RGD peptides for cancer-cell targeting. J Am Chem Soc 136(51):17734–17737 Samanta C (2008) Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl Catal A Gen 350(2):133–149 DeRosa MC, Hodgson DJ, Enright GD, Dawson B, Evans CE, Crutchley RJ (2004) Iridium luminophore complexes for unimolecular oxygen sensors. J Am Chem Soc 126(24):7619–7626 Kundu S, Liang H (2011) Shape-selective formation and characterization of catalytically active iridium nanoparticles. J Colloid Interface Sci 354(2):597–606 Özkar S, Finke RG (2005) Iridium (0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: exceptional activity, catalyst lifetime, and selectivity at complete conversion. J Am Chem Soc 127(13):4800–4808 Hu WH, He GL, Zhang HH, Wu XS, Li JL, Zhao ZL, Qiao Y, Lu ZS, Liu Y, Li CM (2014) Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86(9):4488–4493 Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji LN, Mao ZW (2015) Dual-enzyme characteristics of Polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Interfaces 7(15):8233–8242 Du D, Wang LM, Shao YY, Wang J, Engelhard MH, Lin YH (2011) Functionalized graphene oxide as a Nanocarrier in a Multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83(3):746–752 Liu GD, Shen H, Mao JN, Zhang LM, Jiang Z, Sun T, Lan Q, Zhang ZJ (2013) Transferrin modified graphene oxide for Glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl Mater Interfaces 5(15):6909–6914 Chang DF, Gao YF, Wang LJ, Liu G, Chen YH, Wang T, Tao W, Mei L, Huang LQ, Zeng XW (2016) Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci 463:279–287 Jiang L, Jiang SS, Lin YB, Yang H, Xie ZH, Lin YB, Long H (2015) Controllable synthesis of polydopamine nanoparticles in microemulsions with pH-activatable properties for cancer detection and treatment. J Mater Chem B 3(33):6731–6739 Yang T, Ma YX, Huang QL, Cao GJ, Wan S, Li N, Zhao H, Sun X, Yin FJ (2015) Palladium-iridium nanowires for enhancement of electro-catalytic activity towards oxygen reduction reaction. Electrochem Commun 59:95–99 Nassef HM, Civit L, Fragoso A, O’Sullivan CK (2009) Amperometric immunosensor for detection of celiac disease toxic gliadin based on fab fragments. Anal Chem 81(13):5299–5307 Pang XH, Li JX, Zhao YB, Wu D, Zhang Y, Du B, Ma HM, Wei Q (2015) Label-free Electrochemiluminescent immunosensor for detection of carcinoembryonic antigen based on nanocomposites of GO/MWCNTs-COOH/Au@CeO2. ACS Appl Mater Interfaces 7(34). doi:10.1021/acsami.5b05185 Feng T, Chen X, Qiao X, Sun Z, Wang H, Qi Y, Hong C (2015) Graphene oxide supported rhombic dodecahedral Cu2O nanocrystals for the detection of carcinoembryonic antigen. Anal Biochem 494:101–107 Quan H, Zuo CH, Li T, Liu YT, Li MY, Zhong M, Zhang YY, Qi HZ, Yang MH (2015) Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 176:893–897 Sun GQ, Ding YN, Ma C, Zhang Y, Ge SG, Yu JH, Song XR (2014) Paper-based electrochemical immunosensor for carcinoembryonic antigen based on three dimensional flower-like gold electrode and gold-silver bimetallic nanoparticles. Electrochim Acta 147:650–656