Ammoxidation of 2-methyl pyrazine on supported ammonium salt of 12-molybdophosphoric acid catalysts: The influence of nature of support

KATABATHINI NARASIMHARAO1, B HARI BABU2, N LINGAIAH2, P S SAI PRASAD2, SHAEEL A AL-THABAITI1
1Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
2Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India

Tóm tắt

Influence of the nature of support on the formation of catalytically active species was investigated to clarify the key factor for the synthesis of supported ammonium salt of 12-molybdophosphoric acid (AMPA) catalyst which maintains the activity of ammoxidation during 2-methylpyrazine reaction. With this aim, different loadings of niobia-, silica- and alumina-, supported AMPA catalysts were prepared. The AMPA loading was varied in the range of 5–25 wt%. The synthesized solids were characterized by nitrogen adsorption for BET surface area, XRD and 31P MAS NMR techniques. All the AMPA-supported samples are poorly crystalline even after 25 wt% AMPA loading. Investigations using 31P MAS NMR spectroscopy of samples revealed that Keggin ion existed as at least five different species on the supports. The investigated properties were acidity of the support and amount of AMPA loading on the support. Active sites for the ammoxidation of MP on supported AMPA catalysts seem to be the interacted and/or the lacunary species. Maximum catalytic activity could be obtained at lower loadings with AMPA deposited on acidic supports whereas the less acidic supports require higher loading. It was found that in order to efficiently generate the active interactive species, the support must have an acidity which promotes the formation of support-AMPA interactive species. It is possible to enhance the catalytic activity of the supported AMPA catalyst for ammoxidation of 2-methylpyrazine by controlling the acidity of the support and AMPA loading on the support.

Tài liệu tham khảo

Moffat J B 2001 Metal–oxygen clusters: The surface and catalytic properties of heteropoly oxometalates, New York: Kluwer Publications Haber J, Pamin K, Matachowski L, Napruszewska B and Połtowicz J 2002 J. Catal. 207 296 Misono M 2009 Catal. Today 144 285 Mallick S, Rana S and Parida K M 2012 Ind. Eng. Chem. Res. 51 7859 Parida K M and Mallick S 2008 J. Mol. Catal. A: Chem. 279 104 Rana S, Mallick S and Parida K M 2012 J. Porous. Mater. 19 397 Mallik S, Dash S S, Parida K M and Mohapatra B K 2006 J. Colloid Interface Sci. 300 237 Hayashi H and Moffat J B 1982 J. Catal. 77 473 McMonagle J B and Moffat J B 1984 J. Colloid Interface Sci. 101 479 Rao K N, Gopinath R, Hussain A, Lingaiah N and Sai Prasad P S 2000 Catal. Lett. 68 223 Forni L, Oliva C and Rebuschini C 1988 J Chem. Soc. Faraday Trans. 84, 2397 Bondareva V M, Andrushkevich T V and Zenkovets G A 1997 Kinet. Catal. 38 657 Bondareva V M, Andrushkevich T V, Detusheva L G and Litvak G S 1996 Catal. Lett. 42 113 Lee Y K, Shin C H, Chang T S, Lee D K and Cho D H, inventors; Korea Research Institute of Chemical Technology, assignee. Process for preparing Cyanopyrazine. United States patent US 5,786,478. August 1995 Lopez-Salinas E, Hernadez-Cortez J G, Schifter L, Torres-Garcia E, Navarrete J, Gutierrez-Carrillo A, Lpez T, Lottici P P and Bersani D 2000 Appl. Catal. A: Gen. 193 215 Damyanova S, Fierro J L G, Sobrados I and Sanz J 1999 Langmuir 15 469 Vazquez P G, Blanco M N and Caceres C V 1999 Catal. Lett. 60 205 Concellon A, Vazquez P G, Blanco M N and Caceres C 1998 J. Colloid Interface Sci. 204 256 Chang T 1995 J. Chem. Soc. Faraday Trans. 91 375 Rene T, Deltcheff C R and Fournier M 1991 J. Chem. Soc. Chem. Commun. 1352 Rao K M, Gobetto R, Lannibello A and Zecchina A 1989 J. Catal. 119 512 Moffat JB, Kasztelan SJ 1988 J. Catal. 109 206 Kaszletan S and Moffat J B 1987 J. Catal. 106 512 Srilakshmi Ch, Rao K N, Lingaiah N, Suryanarayana I and Sai Prasad P S 2002 Catal. Lett. 83 127 Rao K N, Gopinath R, Kumar M S, Suryanarayana I and Sai Prasad P S 2001 Chem. Commun. 2088 Kozhevnikov I V 1998 Chem. Rev. 98 171 Soled S, Miseo S, McVicker G, Gates W E, Gutierrez A and Paes J 1997 Catal. Today 36 441 Rao K N, Reddy K M, Lingaiah N, Suryanarayana I and Sai Prasad P S 2006 Appl. Catal. A: Gen. 300 139 Tanabe K 1990 Catal. Today 8 1 Sebulsky R T and Henke A M 1971 Ind. Eng. Chem. Process Des. Dev. 10 272 Izumi Y and Urabe K 1981 Chem. Lett. 10 663 Cheng W C and Luthra N P 1988 J. Catal. 109 163 Davydov A A and Goncharova O I 1993 Russ. Chem. Rev. 62 105 Andrushkevich T V, Bondareva V M, Maksimovskaya R I, Popova G Y, Plyasova L M, Litvak G S and Ziborov A V 1994 Stud. Surf. Sci. Catal. 82 837 Bruckman K, Che M, Haber J and Tatibouet J M 1994 Catal. Lett. 25 225; (b) Bock J and Su G J 1970 J. Am. Ceram. Soc. 53 69 Roach C M, Loronze N, Guillou N, Teze A and Herve G 2000 Appl. Catal. A: Gen. 199 33; (b) Roach C M, Loronze N, Villanneau R, Guillou N, Teze A and Herve G 2000 J. Catal 190 173 Cubeiro M L, Damyanova S and Fierro J L G 1997 Catal. Lett. 49 223; (b) Damyanova S, Gomez L M, Banares M A and Fierro J L G 2000 Chem. Mater. 12 501 Black J B, Clayden N J, Gai P L, Scott J D, Serwicka E M and Goodenough J B 1987 J. Catal. 106 1 Caliman E, Dias J. A, Dias S C L, Garcia F A C, de Macedo J L and Almeida L S 2010 Micropor. Mesopor. Mater. 132 103 Iwamoto R, Fernandez C, Amoureux J P and Grimblot J 1998 J. Phys. Chem. B 102 4342 Trolliet C, Condurier G and Vedrine J C 2001 Top. Catal. 15 73 Bondareva V M, Andrushkevich T V, Paukshtis E A, Paukshtis N A, Budneva A A, Parmon V N 2007 J Mol Catal A: Chem. 269 240 Bachiller-Baeza B, Anderson J A 2004 J Catal 228 225 Mestl G, Ilkenhans T, Spielbauer D, Dieterle M, Timpe O, Krohnert J, Jentoft F, Knozinger H and Schlogl R 2001 Appl. Catal. A: Gen. 210 13