Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a potential archaeological wood consolidant

European Biophysics Journal - Tập 49 - Trang 791-798 - 2020
Jennifer M. K. Wakefield1,2, Robert Hampe3, Richard B. Gillis1,4, Agnes Sitterli3, Gary G. Adams4, Hartmut Kutzke5, Thomas Heinze3, Stephen E. Harding1,5
1National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, UK
2School of Chemistry, University of Nottingham, Nottingham, UK
3Institut für Organische Chemie und Makromolekulare Chemie, Kompetenzzentrum Polysaccharidforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
4Queen’s Medical Centre, School of Health Sciences, University of Nottingham, Nottingham, UK
5Museum of Cultural History, University of Oslo, Oslo, Norway

Tóm tắt

The 6-deoxy-6-aminocelluloses—or “aminocelluloses”—are a class of synthetic natural cellulose derivatives which are mostly aqueous soluble and have excellent film-forming properties. Recent studies have connected these properties at the molecular level with protein-like self-associative behaviour for a range of aminocelluloses including a 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1 with the association being a two-stage process—a reversible oligomerisation followed by further (semi-reversible) aggregation into larger structures. Here, we synthesise and compare a new 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1′ with different degree of substitution with one with further alkyl derivatisation, namely 6-deoxy-6-(ω-hydroxyethyl) aminocellulose HEA-1′. As with AEA-1, sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge still show a two-stage process for both AEA-1′ and HEA-1′, with the latter giving higher molar masses. The consequences of these properties for use as consolidants for archaeological wood are considered.

Tài liệu tham khảo

Almkvist G, Persson I (2008) Analysis of acids and degradation products related to iron and sulfur in the Swedish warship Vasa. Holzforschung 62:694–703. https://doi.org/10.1515/HF.2008.130 Braovac S, McQueen CMA, Sahlstedt M, Kutzke H, Łucejko JJ, Klokkernes T (2018) Navigating conservation strategies: linking material research on alum-treated wood from the Oseberg collection to conservation decisions. Herit Sci 6:77. https://doi.org/10.1186/s40494-018-0241-y Christensen M, Kutzke H, Hansen FK (2012) New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. J Cult Herit 13:S183–S190 Cipriani G, Salvini A, Baglioni P, Bucciarelli E (2010) Cellulose as a renewable resource for the synthesis of wood consolidants. J Appl Polym Sci 118:2939–2950. https://doi.org/10.1002/app.32634 Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009 Dam J, Schuck P (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods in enzymology. Academic Press, New York, pp 185–212. https://doi.org/10.1016/S0076-6879(04)84012-6 Francesko A, Fernandes MM, Ivanova K, Amorim S, Reis RL, Pashkuleva I, Mendoza E, Pfeifer A, Heinze T, Tzanov T (2016) Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater 33:203–212. https://doi.org/10.1016/j.actbio.2016.01.020 Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Int 4:637–642 Gillis RB, Adams GG, Heinze T, Nikolajski M, Harding SE, Rowe AJ (2013) MULTISIG: a new high-precision approach to the analysis of complex biomolecular systems. Eur Biophys J 42:777–786. https://doi.org/10.1007/s00249-013-0924-y Green AA (1933) The preparation of acetate and phosphate buffer solutions of known pH and ionic strength. J Amer Chem Soc 55:2331–2336. https://doi.org/10.1021/ja01333a018 Harding SE (1984) An analysis of the heterogeneity of mucins. No evidence for a self association. Biochem J 219:1061–1064. https://doi.org/10.1042/bj2191061 Harding SE, Adams GG, Almutairi F, Alzahrani Q, Erten T, Kök MS, Gillis RB (2015) Ultracentrifuge methods for the analysis of polysaccharides, glycoconjugates, and lignins. Meth Enzymol 562:391–439 Heinze T, Liebert T (2012) Celluloses and polyoses/hemicelluloses. ([Editor]) Polymer science: a comprehensive reference. Elsevier Science, Amsterdam, pp 83–152 Heinze T, Nikolajski M, Daus S, Besong TMD, Michaelis N, Berlin P, Morris GA, Rowe AJ, Harding SE (2011) Protein-like oligomerization of carbohydrates. Angew Chem Int Ed 50:8602–8604. https://doi.org/10.1002/anie.201103026 Heinze T, Siebert M, Berlin P, Koschella A (2016) Biofunctional materials based on amino cellulose derivatives–a nanobiotechnological concept. Macromol Biosci 16:10–42. https://doi.org/10.1002/mabi.201500184 Jedvert K, Elschner T, Heinze T (2017) Adsorption studies of amino cellulose on cellulosics. Macromol Mater Eng 302:1700022. https://doi.org/10.1002/mame.201700022 Jung A, Berlin P (2005) New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12:67–84 Jung A, Wolters B, Berlin P (2007) (Bio)functional surface structural design of substrate materials based on self-assembled monolayers from aminocellulose derivatives and amino(organo)polysiloxanes. Thin Solid Films 515:6867–6877. https://doi.org/10.1016/j.tsf.2007.02.071 Kratky O, Leopold H, Stabinger H (1973) The determination of the partial specific volume of proteins by the mechanical oscillator technique. Meth Enzymol 27:98–110. https://doi.org/10.1016/s0076-6879(73)27007-6 Kumbar S, Laurencin C, Deng M (2014) Natural and synthetic biomedical polymers. Elsevier Science, Amsterdam McHale E, Braovac S, Steindal CC, Gillis RB, Adams GG, Harding SE, Benneche T, Kutzke H (2016) Synthesis and characterisation of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wood. Pure Appl Chem 88:969–977. https://doi.org/10.1515/pac-2016-0814 Morris GA, Castile J, Smith A, Adams GG, Harding SE (2009) Macromolecular conformation of chitosan in dilute solution: a new global hydrodynamic approach. Carbohydr Polym 76:616–621. https://doi.org/10.1016/j.carbpol.2008.11.025 Nikolajski M, Adams GG, Gillis RB, Besong DT, Rowe AJ, Heinze T, Harding SE (2014) Protein–like fully reversible tetramerisation and super-association of an aminocellulose. Sci Rep 4:3861. https://doi.org/10.1038/srep03861 Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277. https://doi.org/10.1007/s00253-011-3432-y Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N, N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238:143–163 Reis RL, Neves NM, Mano JF, Gomes ME, Marques AP, Azevedo HS (2008) Natural-based polymers for biomedical applications. Woodhead Publishing, Boca Raton Roark DE, Yphantis DA (1969) Studies of self-associating systems by equilibrium ultracentrifugation. Ann NY Acad Sci 164:245–278 Roemhild K, Wiegand C, Hipler U-C, Heinze T (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771. https://doi.org/10.1002/marc.201300588 Schuck P (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320:104–124. https://doi.org/10.1016/s0003-2697(03)00289-6 Tanford CA (1961) Physical chemistry of macromolecules. Wiley, New York Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 49:832–864. https://doi.org/10.1002/polb.22259 Wakefield JMK, Gillis RB, Adams GG, McQueen CMA, Harding SE (2018) Controlled depolymerisation assessed by analytical ultracentrifugation of low molar mass chitosan for use in archaeological conservation. Eur Biophys J 47:769–775. https://doi.org/10.1007/s00249-018-1290-6 Wakefield JMK, Braovac S, Kutzke H, Stockman RA, Harding SE (2020) Tert-butyldimethylsilyl chitosan synthesis and characterisation by analytical ultracentrifugation, for archaeological wood conservation. Eur Biophys J (submitted) Walsh Z, Janeček E-R, Jones M, Scherman OA (2017) Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood. Stud Conserv 62:173–183. https://doi.org/10.1179/2047058414Y.0000000149