Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes

Liqiang Jin1, Weigong Li2, Qingyu Xu2, Qiucun Sun2
1School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, China
2Key Laboratory of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Jinan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barazzouk S, Daneault C (2012) Amino acid and peptide immobilization on oxidized nanocellulose: spectroscopic characterization. Nanomaterials 2:187–205. doi: 10.3390/nano2020187

Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283. doi: 10.1016/j.cej.2014.08.030

Cheng YM, Lu JT, Liu SL, Zhao P, Lu GZ, Chen JH (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64. doi: 10.1016/j.carbpol.2014.02.034

Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi: 10.1016/j.biortech.2005.05.001

Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2:3403–3409. doi: 10.1039/c2ra01071b

Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19:2069–2079. doi: 10.1007/s10570-012-9769-2

Deng C, Liu J, Zhou W, Zhang YK, Du KF, Zhao ZM (2012) Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue. Chem Eng J 200–202:452–458. doi: 10.1016/j.cej.2012.06.059

Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies. Chem Eng J 168:77–85. doi: 10.1016/j.cej.2010.12.038

El-Zahhar AA, Awwad NS, El-Katori EE (2014) Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J Mol Liq 199:454–461. doi: 10.1016/j.molliq.2014.07.034

Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066. doi: 10.1021/bm1000247

Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. doi: 10.1016/j.carbpol.2010.12.029

Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w

Hemraz UD, Boluk Y, Sunasee R (2013) Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Can J Chem 91:974–981. doi: 10.1139/cjc-2013-0165

Ibrahim S, Fatimah I, Ang HM, Wang SB (2010) Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Sci Technol 62:1177–1182. doi: 10.2166/wst.2010.388

Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibres for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978. doi: 10.1021/bm070113b

Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi: 10.1039/C0NR00583E

Kalaskar DM, Ulijn RV, Gough JE, Alexander MR, Scurr DJ, Sampson WW, Eichhorn SJ (2010) Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS. Cellulose 17:747–756. doi: 10.1007/s10570-010-9413-y

Karim Z, Mathew AP, Grahn M, Mouzonb J, Oksmana K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. doi: 10.1016/j.carbpol.2014.06.048

Kayranli B (2011) Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution: isotherm, kinetic and thermodynamic study. Chem Eng J 173:782–791. doi: 10.1016/j.cej.2011.08.051

Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492. doi: 10.1021/bm0000337

Kim UJ, Kuga S, Wada M (2004) Solubilizaton of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10. doi: 10.1016/j.carbpol.2003.10.013

Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587

Li J, Wan YZ, Li LF, Liang H, Wang JH (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng 29:1635–1642. doi: 10.1016/j.msec.2009.01.006

Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932. doi: 10.1021/bm5002944

Liu WJ, Yao C, Wang MH, Ji JL, Ying L, Fu CY (2012) Kinetics and thermodynamics characteristics of cationic yellow X-GL adsorption on attapulgite/rice hull-based activated carbon nanocomposites. Environ Prog Sustain Energy 32:655–662. doi: 10.1002/ep.11680

Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Biobased nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461. doi: 10.1007/s10570-013-0139-5

Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi: 10.1016/j.carbpol.2011.08.022

Lu TH, Li Q, Chen WH, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138. doi: 10.1016/j.compscitech.2014.01.020

Ma H, Burger C, Hsiao BS, Chu B (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13:180–186. doi: 10.1021/bm201421g

Magriotis ZM, Vieira SS, Saczk AA, Santos NAV, Stradiotto NR (2014) Removal of dyes by lignocellulose adsorbents originating from biodiesel production. J Environ Chem Eng 2:2199–2210. doi: 10.1016/j.jece.2014.09.012

Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766. doi: 10.3390/ma6051745

Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134. doi: 10.1016/j.chemosphere.2007.08.015

Musyoka SM, Ngila JC, Moodley B, Petrik LA (2011) Synthesis, characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Anal Lett 44:1925–1936. doi: 10.1080/00032719.2010.539736

Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502. doi: 10.1016/j.cej.2014.05.045

Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FT-IR spectroscopy. Carbohydr Res 340:2376–2391. doi: 10.1016/j.carres.2005.08.007

Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212. doi: 10.1007/s10570-011-9573-4

Pan SB, Ragauskas AJ (2014) Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation. Carbohydr Polym 111:514–523. doi: 10.1016/j.carbpol.2014.04.096

Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment 58:179–196. doi: 10.1016/j.cej.2011.12.013

Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. doi: 10.1039/C2SM27344F

Piccin JS, Gomes CS, Feris LA, Gutterres M (2012) Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chem Eng J 183:30–38. doi: 10.1016/j.cej.2011.12.013

Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. doi: 10.1039/B808639G

Sabzalian Z, Alam MN, Van de Ven TGM (2014) Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers. Cellulose 21:1381–1393. doi: 10.1007/s10570-014-0178-6

Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342. doi: 10.1007/s11051-005-7523-5

Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794. doi: 10.1177/004051755902901003

Silva LS, Lima LCB, Silva FC, Matos JME, Santos MRMC, Santos LS Jr (2013) Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chem Eng J 218:89–98. doi: 10.1016/j.cej.2012.11.118

Sirviö J, Hyväkkö U, Liimatainen H, Niinimäki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297. doi: 10.1016/j.carbpol.2010.09.036

Sirviö JA, Kolehmainen A, Visanko M, Liimatainen H, Niinimäki J, Hormi OE (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390. doi: 10.1021/am503659j

Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92. doi: 10.1016/j.clay.2014.06.016

Unuabonah EI, El-Khaiary MI, Olu-Owolabi BI, Adebowale KO (2012) Predicting the dynamics and performance of a polymer-clay based composite in a fixed bed system for the removal of lead (II) ion. Chem Eng Res Des 90:1105–1115. doi: 10.1016/j.cherd.2011.11.009

Vakili M, Rafatulah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and waste water: a review. Carbohydr Polym 113:115–130. doi: 10.1016/j.carbpol.2014.07.007

Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almeida VC (2012) Kinetic and equilibrium studies: adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods. Chem Eng J 181–182:243–250. doi: 10.1016/j.cej.2011.11.073

Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidized celluloses. Polym Degrad Stab 49:245–250. doi: 10.1016/0141-3910(95)87006-7

Visanko M, Liimatainen H, Sirviö J, Heiskanen J, Hormi O, Niinimäki J (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physico-chemical characteristics and use as an oil-water stabilizer. Biomacromolecules 15:2769–2775. doi: 10.1021/bm500628g

Wang LJ, Li J (2013) Adsorption of C.I. Reactive red 228 dye from aqueous solution by modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158. doi: 10.1016/j.indcrop.2012.05.031

Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-Responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006. doi: 10.1021/mz30030061

Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface J 209:172–184. doi: 10.1016/j.cis.2014.04.002

Zaman M, Xiao HN, Chibante F, Ni YH (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170. doi: 10.1016/j.carbpol.2012.02.066

Zhou CJ, Wu QL, Lei TZ, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24. doi: 10.1016/j.cej.2014.04.034