Chất lỏng ion hóa chức năng amine cho việc thu giữ CO2

Journal of Molecular Modeling - Tập 26 - Trang 1-12 - 2020
Xueying Zhu1, Zijiao Chen2, Hongqi Ai1
1School of Chemistry and Chemical Engineering, University of Jinan, Jinan, People’s Republic of China
2Institute of Science and Technology, Xinjiang University, Aksu, China

Tóm tắt

Trong ngành công nghiệp dầu khí, việc giải phóng ngày càng nhiều carbon dioxide (CO2) gây ra hiệu ứng nhà kính và thậm chí dẫn đến biến đổi khí hậu, khiến cho việc thu giữ CO2 trở thành một vấn đề cấp thiết. Để thiết kế chất hấp thụ lý tưởng và hiệu quả, cơ chế tương tác cho việc thu giữ CO2 đã được điều tra một cách hệ thống trong một loạt các chất lỏng ion dựa trên imidazolium (ILs). Các hiệu ứng tiềm năng của chuỗi nhánh alkyl, nguyên tử halogen (F, Cl, Br) có tính điện tâm điện, các nhóm có khả năng cho điện OH và NH2 (gắn trên cation hoặc/được anion), và dung môi nước đã được làm rõ trong việc thu giữ CO2 bằng cách sử dụng hàm CAM-B3LYP với mô hình hòa tan SMD-GIL, và chất hấp thụ xanh hiệu quả tiềm năng nhất đã được dự đoán. Công trình này cung cấp một ý tưởng rõ ràng và cơ sở lý thuyết về thiết kế IL mong muốn cho việc thu giữ CO2.

Từ khóa

#chất lỏng ion #CO2 #thu giữ #amine #imidazolium

Tài liệu tham khảo

Le QC, Peters GP, Andres RJ, Andrew RM, Boden T, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, Hous JI, Jain AK, Jones SD, Kato E, Keeling RF, Klein GK, Körtzinger A, Koven C, Lefèvre N, Omar A, Ono T, Park GH, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Tilbrook B, Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S, Yue C (2013). Earth Syst. Sci. Data Discuss 6:689–760 Riboldi L, Bolland O (2015). Int. J. Greenhouse Gas Control 39:1–16 Leperi KT, Snurr RQ, You FQ (2016). Ind. Eng. Chem. Res. 55:3338–3350 Riboldi L, Bolland O (2016). Int. J. Hydrog. Energy 41:10646–10660 Northrop PS, Valencia JA (2009). Energy Procedia 1:171–177 Otsuki T (2001). Sci. Total Environ. 277:21–25 Hanak DP, Biliyok C, Anthony EJ, Manovic V (2015). Int. J. Greenhouse Gas Control 42:226–236 Hanak DP, Biliyok C, Manovic V (2015). Int. J. Greenhouse Gas Control 34:52–62 Mumford KA, Wu Y, Smith KH, Stevens GW (2015). Front. Chem. Sci. Eng. 9:125–141 Li SG, Pyrzynski TJ, Klinghoffer NB, Tamale T., Zhong Y. F., Aderhold JL, Zhou SJ, Meyer HS, Ding Y, Bikson B. J (2017). Membr. Sci. 527: 92–101 Sreedhar I, Vaidhiswaran R, Kamani BM (2017). Renew. Sust. Energ. Rev. 68:659–684 Resnik KP, Yeh JT, Pennline HW (2004). Int. J. Environ. Technol. Manag. 4:89 Bottoms RR (1930). Separating acid gases, Girdler Corp., U.S. Patent 1783901 Yeh JT, Resnik KP, Rygle K, Pennline HW (2005). Fuel Process. Technol 86:1533 Choi WJ, Seo JB, Park SW, Oh KJ (2009). Korean J. Chem. Eng. 26:705 Yeh JT, Resnik KP, Pennline HW (2004). Prepr. Pap. Am. Chem. Soc. Div. Fuel. Chem 49:247–248 Vaidya PD, Kenig EY (2007). Chem. Eng. Technol. 30:1467–1474 Zhang SH, Lu YQ, Ye XH (2013). Int. J. Greenhouse Gas Control 13:17–25 Srikanth CS, Chuang SSC (2012). ChemSusChem 5:1435–1442 Jork CJ (2005). Chem. Thermodynamics 37:537–558 Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005). J. Phys. Chem. 109:6366 Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006). J. Phys Chem. B: Lett. 110:15059 Anderson JL, Dixon JK, Brennecke JF (2007). Acc. Chem. Res. 40:1208 Brennecke JF, Gurkan BE (2010). J. Phys. Chem. Lett. 1:3459 Finotello A, Bara JE, Narayan S, Camper D, Noble RD (2008). J. Phys. Chem. B 112:2335 Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF (2004). J. Am. Chem. Soc. 126:5300–5308 Mark JM, Sudhir NVKA, Jessica LA, Dixon JK, Brennecke JF (2007). J. Phys. C. B. 111:9001–9009 Aki SNVK, Mellein BR, Saurer EM, Brennecke JF (2004). J. Phys. Chem. B 108:20355–20365 Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP (2010). J. Supercrit. Fluids 52:258–265 Shiflett MB, Yokozeki A (2005). Ind. Eng. Chem. Res. 44:4453–4464 Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T (2008). J. Phys. Chem. B 112:16654–16663 Bates ED, Mayton RD, Ntai IH (2002). J. Am. Chem. Soc. 124:926–927 Kurnia KA, Harris F, Wilfred CD, Mutalib MIA, Murugesan T (2009). J. Chem. Thermodynamics 41:1069–1073 Yuan X, Zhang S, Liu J, Lu X (2007). Fluid Phase Equilib. 257:195–200 Kazarian SG, Briscoe BJ, Welton T (2000). Chem. Commun. 20:2047–2048 Huang Y, Xiao Y, Huang H, Liu Z, Liu D, Yang Q, Zhong C (2015). Chem. Commun. 51:17281–17284 Izgorodina EI, Hodgson JL, Weis DC, Pas SJ, MacFarlane DR (2015). J. Phys. Chem. B 119:11748–11759 Simons TJ, Verheyen T, Izgorodina EI, Vijayaraghavan R, Young S, Pearson AK, Pas SJ, MacFarlane DR (2016). Phys. Chem. Chem. Phys. 18:1140–1149 Wang CM, Luo HM, Jiang DE, Li HR, Dai S (2010). Angew. Chem. Int. Ed. 49:5978–5981 Gardas RL, Costa HF, Freire MG, Carvalho PJ (2008). J. Chem. Eng. Data 53:805–811 Sánchez LG, Espel JR, Onink F, Meindersma GM, Haan ABD (2009). J. Chem. Eng. Data 54:2803–2812 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J. D (2013). J. Fox, Gaussian 09, revision. 01, Gaussian, Inc., Wallingford CT Yanai T, Tew D, Handy NC (2004). Chem. Phys. Lett. 393:51–57 Alparone A (2013). Chem. Phys. Lett. 563:88–92 James F, Per-Åke M, Björn OR (1998). Chem. Phys. Lett. 288:299–306 Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983). J. Comput. Chem. 4:294–301 Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA (1982). J. Chem. Phys. 77:3654–3665 Gordon MS (1980). Chem. Phys. Lett. 76:163–168 Marenich AV, Cramer CJ, Truhlar DG (2009). J. Phys. Chem. B 113:6378–6396 Gonzalez C, Schlegel HB (1990). J. Phys. Chem. 94:5523–5527 Robert H, Silvia I, Gregory GW, Rob A (2014). J. Phys. Chem. C 118:13998–14008 Maria AT, Serrate AT, Brook CM, Eric JSJ, Simon MP, Matthew LC, John MS, Timothy KM, Kenneth GM (2015). J. Phys. Chem. C 119:5491–5505 Brooks CM, Eric JSJ, Simon MP, Matthew LC, Kenneth GM, Timothy KM (2016). J. Phys. Chem. C 120:12472–12483 Sugosh RP, Dutt GB (2016). J. Phys. Chem. B 120:13118–13124 Zhang JZ, Jia C, Dong HF, Wang JQ, Zhang XP, Zhang SJ (2013). Ind. Eng. Chem. Res. 52:5835–5841 Xue ZM, Zhang ZF, Han J, Chen Y, Mu TC (2011). Int. J. Greenhouse Gas Control 5:628–633 Gurkan BE, Fuente JC, Mindrup EM (2010). J. Am. Chem. Soc. 132:2116 Gurkan BE, Goodrich BF, Mindrup EM, Ficke LE, Massel M, Seo S, Senftle TP, Wu H, Glaser MF, Shah JK, Maginn EJ, Brennecke JF, Schneider WF (2010). J. Phys. Chem. Lett. 1:3494 Liu XM, Zhou GH, Zhang SJ, Yao XQ (2009). Fluid Phase Equilib. 284:4–49 Zhu XY, Sun H, Zhang DJ, Liu CB (2011). J. Mol. Model. 17:1997–2004 Zhu XY, Ai HQ (2016). J. Mol. Model. 22:152 Sistla YS, Khanna A (2015). Chem. Eng. J. 273:268–276 Hiremath V, Jadhav AH, Lee HKS, Seo JG (2016). Chem. Eng. J. 287:602–617 Besnard M, Cabaço MI, Chávez FV, Pinaud N, Sebastião PJ, Coutinho JAP, Danten Y (2012). Chem. Commun. 48:1245 Tao JM, Rappe AM (2014). Phys. Rev. Lett. 112:106101 Gurau G, Rodríguez H, Kelley SP, Janiczek P, Kalb RS, Rogers RD (2011). Angew. Chem. Int. Ed. 50:12024 Zhang Y, Wu Z, Chen S, Yu P, Luo Y (2013). Ind. Eng. Chem. Res. 52:6069 Tommasi I, Sorrentino F (2006). Tetrahedron Lett. 47:6453 Shiflett MB, Kasprzak DJ, Junk CP, Yokozeki A (2008). J. Chem. Thermodyn. 40:25 Li X, Zeng Z, Garg S, Shreeve JM (2008). Eur. J. Inorg. Chem. 21:3353–3358 Xue H, Shreeve JM (2005). Eur. J. Inorg. Chem. 13:2573–2580 Zhou ZB, Matsumoto H, Tatsumi K (2004). Chem. Lett. 33:1636–1637 Zhang XP, Zhang XC, Dong HF, Zhao ZJ, Zhang SJ, Huang Y (2012). Energy. Environ. Sci 5:6668–6681 Hossain MI, Babaa MR, ElHarbawi M, Kumer A (2011). J. Chem. Eng. Data 56:4188–4193 Du DM, Fu AP (2015). J. Mol. Model. 21:210 Sistla YS, Khanna A (2014). J. Ind. Eng. Chem. 20:2497–2509 Laddha SS, Danckwerts PV (1981). Chem. Eng. Sci. 36:479 Bjørnar A, Richard B, Ole S (2007). J. Phys. Chem. A 111:1222–1228 Kelkar MS, Maginn EJ (2007). J. Phys. Chem. B 111:4867–4876 Gong Y, Shen C, Lu Y, Meng H, Li C (2012). J. Chem. Eng. Data 57:33–39 Lara GS, Josep RE, Ferdy OGWM, Andre BH (2009). J. Chem. Eng. Data 54:2803–2812 Holst JV, Versteeg GF, Brilman DWF, Hogendoorn JA (2009). Chem. Eng. Sci. 64:59–68 Firaha DS, Kirchner B (2016). ChemSusChem 9:1591–1599 Gardas RL, Goodrich RG, Hardacre C, Hussain A (2010). J. Chem. Eng. Data 55:1505–1515 Cao Y, Mu T (2014). Ind. Eng. Chem. Res. 53:8651–8664 Goodrich BF, Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2011). Ind. Eng. Chem. Res. 50:111–118 Zhou X, Jing G, Liu F, Lv B, Zhou Z (2017). Energy Fuel 31:1793–1802