Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chất lỏng ion hóa chức năng amine cho việc thu giữ CO2
Tóm tắt
Trong ngành công nghiệp dầu khí, việc giải phóng ngày càng nhiều carbon dioxide (CO2) gây ra hiệu ứng nhà kính và thậm chí dẫn đến biến đổi khí hậu, khiến cho việc thu giữ CO2 trở thành một vấn đề cấp thiết. Để thiết kế chất hấp thụ lý tưởng và hiệu quả, cơ chế tương tác cho việc thu giữ CO2 đã được điều tra một cách hệ thống trong một loạt các chất lỏng ion dựa trên imidazolium (ILs). Các hiệu ứng tiềm năng của chuỗi nhánh alkyl, nguyên tử halogen (F, Cl, Br) có tính điện tâm điện, các nhóm có khả năng cho điện OH và NH2 (gắn trên cation hoặc/được anion), và dung môi nước đã được làm rõ trong việc thu giữ CO2 bằng cách sử dụng hàm CAM-B3LYP với mô hình hòa tan SMD-GIL, và chất hấp thụ xanh hiệu quả tiềm năng nhất đã được dự đoán. Công trình này cung cấp một ý tưởng rõ ràng và cơ sở lý thuyết về thiết kế IL mong muốn cho việc thu giữ CO2.
Từ khóa
#chất lỏng ion #CO2 #thu giữ #amine #imidazoliumTài liệu tham khảo
Le QC, Peters GP, Andres RJ, Andrew RM, Boden T, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, Hous JI, Jain AK, Jones SD, Kato E, Keeling RF, Klein GK, Körtzinger A, Koven C, Lefèvre N, Omar A, Ono T, Park GH, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Tilbrook B, Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S, Yue C (2013). Earth Syst. Sci. Data Discuss 6:689–760
Riboldi L, Bolland O (2015). Int. J. Greenhouse Gas Control 39:1–16
Leperi KT, Snurr RQ, You FQ (2016). Ind. Eng. Chem. Res. 55:3338–3350
Riboldi L, Bolland O (2016). Int. J. Hydrog. Energy 41:10646–10660
Northrop PS, Valencia JA (2009). Energy Procedia 1:171–177
Otsuki T (2001). Sci. Total Environ. 277:21–25
Hanak DP, Biliyok C, Anthony EJ, Manovic V (2015). Int. J. Greenhouse Gas Control 42:226–236
Hanak DP, Biliyok C, Manovic V (2015). Int. J. Greenhouse Gas Control 34:52–62
Mumford KA, Wu Y, Smith KH, Stevens GW (2015). Front. Chem. Sci. Eng. 9:125–141
Li SG, Pyrzynski TJ, Klinghoffer NB, Tamale T., Zhong Y. F., Aderhold JL, Zhou SJ, Meyer HS, Ding Y, Bikson B. J (2017). Membr. Sci. 527: 92–101
Sreedhar I, Vaidhiswaran R, Kamani BM (2017). Renew. Sust. Energ. Rev. 68:659–684
Resnik KP, Yeh JT, Pennline HW (2004). Int. J. Environ. Technol. Manag. 4:89
Bottoms RR (1930). Separating acid gases, Girdler Corp., U.S. Patent 1783901
Yeh JT, Resnik KP, Rygle K, Pennline HW (2005). Fuel Process. Technol 86:1533
Choi WJ, Seo JB, Park SW, Oh KJ (2009). Korean J. Chem. Eng. 26:705
Yeh JT, Resnik KP, Pennline HW (2004). Prepr. Pap. Am. Chem. Soc. Div. Fuel. Chem 49:247–248
Vaidya PD, Kenig EY (2007). Chem. Eng. Technol. 30:1467–1474
Zhang SH, Lu YQ, Ye XH (2013). Int. J. Greenhouse Gas Control 13:17–25
Srikanth CS, Chuang SSC (2012). ChemSusChem 5:1435–1442
Jork CJ (2005). Chem. Thermodynamics 37:537–558
Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005). J. Phys. Chem. 109:6366
Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006). J. Phys Chem. B: Lett. 110:15059
Anderson JL, Dixon JK, Brennecke JF (2007). Acc. Chem. Res. 40:1208
Brennecke JF, Gurkan BE (2010). J. Phys. Chem. Lett. 1:3459
Finotello A, Bara JE, Narayan S, Camper D, Noble RD (2008). J. Phys. Chem. B 112:2335
Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF (2004). J. Am. Chem. Soc. 126:5300–5308
Mark JM, Sudhir NVKA, Jessica LA, Dixon JK, Brennecke JF (2007). J. Phys. C. B. 111:9001–9009
Aki SNVK, Mellein BR, Saurer EM, Brennecke JF (2004). J. Phys. Chem. B 108:20355–20365
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP (2010). J. Supercrit. Fluids 52:258–265
Shiflett MB, Yokozeki A (2005). Ind. Eng. Chem. Res. 44:4453–4464
Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T (2008). J. Phys. Chem. B 112:16654–16663
Bates ED, Mayton RD, Ntai IH (2002). J. Am. Chem. Soc. 124:926–927
Kurnia KA, Harris F, Wilfred CD, Mutalib MIA, Murugesan T (2009). J. Chem. Thermodynamics 41:1069–1073
Yuan X, Zhang S, Liu J, Lu X (2007). Fluid Phase Equilib. 257:195–200
Kazarian SG, Briscoe BJ, Welton T (2000). Chem. Commun. 20:2047–2048
Huang Y, Xiao Y, Huang H, Liu Z, Liu D, Yang Q, Zhong C (2015). Chem. Commun. 51:17281–17284
Izgorodina EI, Hodgson JL, Weis DC, Pas SJ, MacFarlane DR (2015). J. Phys. Chem. B 119:11748–11759
Simons TJ, Verheyen T, Izgorodina EI, Vijayaraghavan R, Young S, Pearson AK, Pas SJ, MacFarlane DR (2016). Phys. Chem. Chem. Phys. 18:1140–1149
Wang CM, Luo HM, Jiang DE, Li HR, Dai S (2010). Angew. Chem. Int. Ed. 49:5978–5981
Gardas RL, Costa HF, Freire MG, Carvalho PJ (2008). J. Chem. Eng. Data 53:805–811
Sánchez LG, Espel JR, Onink F, Meindersma GM, Haan ABD (2009). J. Chem. Eng. Data 54:2803–2812
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J. D (2013). J. Fox, Gaussian 09, revision. 01, Gaussian, Inc., Wallingford CT
Yanai T, Tew D, Handy NC (2004). Chem. Phys. Lett. 393:51–57
Alparone A (2013). Chem. Phys. Lett. 563:88–92
James F, Per-Åke M, Björn OR (1998). Chem. Phys. Lett. 288:299–306
Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983). J. Comput. Chem. 4:294–301
Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA (1982). J. Chem. Phys. 77:3654–3665
Gordon MS (1980). Chem. Phys. Lett. 76:163–168
Marenich AV, Cramer CJ, Truhlar DG (2009). J. Phys. Chem. B 113:6378–6396
Gonzalez C, Schlegel HB (1990). J. Phys. Chem. 94:5523–5527
Robert H, Silvia I, Gregory GW, Rob A (2014). J. Phys. Chem. C 118:13998–14008
Maria AT, Serrate AT, Brook CM, Eric JSJ, Simon MP, Matthew LC, John MS, Timothy KM, Kenneth GM (2015). J. Phys. Chem. C 119:5491–5505
Brooks CM, Eric JSJ, Simon MP, Matthew LC, Kenneth GM, Timothy KM (2016). J. Phys. Chem. C 120:12472–12483
Sugosh RP, Dutt GB (2016). J. Phys. Chem. B 120:13118–13124
Zhang JZ, Jia C, Dong HF, Wang JQ, Zhang XP, Zhang SJ (2013). Ind. Eng. Chem. Res. 52:5835–5841
Xue ZM, Zhang ZF, Han J, Chen Y, Mu TC (2011). Int. J. Greenhouse Gas Control 5:628–633
Gurkan BE, Fuente JC, Mindrup EM (2010). J. Am. Chem. Soc. 132:2116
Gurkan BE, Goodrich BF, Mindrup EM, Ficke LE, Massel M, Seo S, Senftle TP, Wu H, Glaser MF, Shah JK, Maginn EJ, Brennecke JF, Schneider WF (2010). J. Phys. Chem. Lett. 1:3494
Liu XM, Zhou GH, Zhang SJ, Yao XQ (2009). Fluid Phase Equilib. 284:4–49
Zhu XY, Sun H, Zhang DJ, Liu CB (2011). J. Mol. Model. 17:1997–2004
Zhu XY, Ai HQ (2016). J. Mol. Model. 22:152
Sistla YS, Khanna A (2015). Chem. Eng. J. 273:268–276
Hiremath V, Jadhav AH, Lee HKS, Seo JG (2016). Chem. Eng. J. 287:602–617
Besnard M, Cabaço MI, Chávez FV, Pinaud N, Sebastião PJ, Coutinho JAP, Danten Y (2012). Chem. Commun. 48:1245
Tao JM, Rappe AM (2014). Phys. Rev. Lett. 112:106101
Gurau G, Rodríguez H, Kelley SP, Janiczek P, Kalb RS, Rogers RD (2011). Angew. Chem. Int. Ed. 50:12024
Zhang Y, Wu Z, Chen S, Yu P, Luo Y (2013). Ind. Eng. Chem. Res. 52:6069
Tommasi I, Sorrentino F (2006). Tetrahedron Lett. 47:6453
Shiflett MB, Kasprzak DJ, Junk CP, Yokozeki A (2008). J. Chem. Thermodyn. 40:25
Li X, Zeng Z, Garg S, Shreeve JM (2008). Eur. J. Inorg. Chem. 21:3353–3358
Xue H, Shreeve JM (2005). Eur. J. Inorg. Chem. 13:2573–2580
Zhou ZB, Matsumoto H, Tatsumi K (2004). Chem. Lett. 33:1636–1637
Zhang XP, Zhang XC, Dong HF, Zhao ZJ, Zhang SJ, Huang Y (2012). Energy. Environ. Sci 5:6668–6681
Hossain MI, Babaa MR, ElHarbawi M, Kumer A (2011). J. Chem. Eng. Data 56:4188–4193
Du DM, Fu AP (2015). J. Mol. Model. 21:210
Sistla YS, Khanna A (2014). J. Ind. Eng. Chem. 20:2497–2509
Laddha SS, Danckwerts PV (1981). Chem. Eng. Sci. 36:479
Bjørnar A, Richard B, Ole S (2007). J. Phys. Chem. A 111:1222–1228
Kelkar MS, Maginn EJ (2007). J. Phys. Chem. B 111:4867–4876
Gong Y, Shen C, Lu Y, Meng H, Li C (2012). J. Chem. Eng. Data 57:33–39
Lara GS, Josep RE, Ferdy OGWM, Andre BH (2009). J. Chem. Eng. Data 54:2803–2812
Holst JV, Versteeg GF, Brilman DWF, Hogendoorn JA (2009). Chem. Eng. Sci. 64:59–68
Firaha DS, Kirchner B (2016). ChemSusChem 9:1591–1599
Gardas RL, Goodrich RG, Hardacre C, Hussain A (2010). J. Chem. Eng. Data 55:1505–1515
Cao Y, Mu T (2014). Ind. Eng. Chem. Res. 53:8651–8664
Goodrich BF, Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2011). Ind. Eng. Chem. Res. 50:111–118
Zhou X, Jing G, Liu F, Lv B, Zhou Z (2017). Energy Fuel 31:1793–1802