Tác động cải thiện của vi khuẩn thúc đẩy sự phát triển thực vật chịu mặn đối với sự tăng trưởng và các tính chất sinh lý của cây lúa (Oryza sativa) trong điều kiện căng thẳng muối

Archiv für Mikrobiologie - Tập 202 - Trang 2419-2428 - 2020
Patel Prittesh1, Patel Avnika1, Patel Kinjal1, Hardik Naik Jinal1, Krishnan Sakthivel2, Natarajan Amaresan1
1C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, India
2Division of Field Crop Improvement and Protection, Central Island Agricultural Research Institute, Port Blair, India

Tóm tắt

Để phát triển nông nghiệp bền vững trên đất mặn, cần khai thác một cách rộng rãi các vi khuẩn thúc đẩy sự phát triển thực vật (PGP) sống ở những vùng có độ mặn cao và các vi khuẩn cộng sinh khác. Nghiên cứu này được thực hiện nhằm đánh giá hiệu quả của các vi khuẩn rễ lúa địa phương chịu mặn đối với việc thúc đẩy sự phát triển của cây trồng trong điều kiện căng thẳng muối. Tổng cộng có 188 chủng vi khuẩn đã được sàng lọc để đánh giá khả năng chịu mặn và chín chủng có khả năng chịu nồng độ 12% NaCl (w/v) đã được lựa chọn. Nhận diện sinh hóa và phân tử cho thấy các vi khuẩn chịu mặn thuộc về các loài Bacillus sp, Exiguobacterium sp, Enterobacter sp, Lysinibacillus sp, Stenotrophomonas sp, Microbacterium sp, và Achromobacter sp. Việc tăng nồng độ NaCl từ 2 lên 4% làm giảm các hoạt động PGP như sản xuất IAA, tan P, tan K và khử nitrat. Tác động của việc cấy ghép vi khuẩn chịu mặn vào sự tăng trưởng và các đặc tính sinh lý khác nhau của cây lúa (Oryza sativa) đã được nghiên cứu. Kết quả cho thấy độ mặn ảnh hưởng đến chiều dài rễ và thân của các cây đối chứng; tuy nhiên, các chủng vi khuẩn cấy ghép đã được phát hiện có tác dụng thúc đẩy sự tăng trưởng của lúa trong điều kiện căng thẳng độ mặn. Hơn nữa, các chất cấy ghép vi khuẩn đã làm tăng đáng kể tổng lượng diệp lục, proline, phenol tổng cộng và thiệt hại oxy hóa như rò rỉ điện phân và chỉ số ổn định màng trong điều kiện căng thẳng muối. Nghiên cứu này gợi ý rằng các vi khuẩn PGP chịu mặn có thể được sử dụng để trồng O. sativa trên các đất nông nghiệp có độ mặn cao.

Từ khóa

#vi khuẩn thúc đẩy phát triển thực vật #cây lúa #chịu mặn #đất mặn #căng thẳng muối

Tài liệu tham khảo

Ali MN, Ghosh B, Gantait S, Chakraborty S (2014) Selection of rice genotypes for salinity tolerance through morpho-biochemical assessment. Rice Sci 21:288–298 Altschul SF, Maddan TL, Schaffer AA, Zang J, Zang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programmes. Nucleic Acids Res 25:3389–3402 Amaresan N, Kumar K, Madhuri K, Usharani GK (2016) Isolation and characterization of salt tolerant plant growth promoting rhizobacteria from plants grown in Tsunami affected regions of Andaman and Nicobar Islands. Geomicrobiol J 33:942–947 Ansari M, Shekari F, Mohammadi MH, Juhos K, Végvári G, Biró B (2019) Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L) cultivars at high salinity. Acta Physiol Plant 41:195 Asch F, Wopereis MCS (2001) Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crops Res 70:127–137 Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894 Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207 Brick JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538 Dastager SG, Pandey A, Lee JC, Li WJ, Kim CJ (2009) Polyphasic taxonomy of novel actinobacteria showing macromolecule degradation potentials in Bigeum Island, Korea. Curr Microbiol 59:21–29 Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791 Farhangi-Abriz S, Tavasolee A, Ghassemi-Golezani K, Torabian S, Monirifar H, Rahmani HA (2020) Growth-promoting bacteria and natural regulators mitigate salt toxicity and improve rapeseed plant performance. Protoplasma. https://doi.org/10.1007/s00709-020-01493-1 Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117 Grattan SR, Linghe L, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. Calif Agric 56:189–198 Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240 Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598 Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990 Jackson ML (1973) Soil chemical analysis. Prentice Hall of India (P) Ltd, New Delhi Kammoun R, Naili B, Bejar S (2008) Application of statistical design to the optimization of parameters and culture medium for -amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by product). Biores Technol 99:5602–5609 Kang S, Radhakrishnan R, Khan AL, Kim M, Park J, Kim B, Shin D, Lee I (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124 Karagöz K, Ateş F, Karagöz H, Kotan R, Çakmakç R (2012) Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. Eur J Soil Biol 50:144–150 Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using grams iodine. Curr Microbiol 57:503–507 Kotuby AJ, Koenig R, Kitchen B (2000) Salinity and plant tolerance. All Archived Publications. Paper 43 Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz'mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291 Kumar K, Manigundan K, Amaresan N (2017) Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. J Basic Microbiol 57:141–150 Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329–339 Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346 Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024 Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876 Mark T, Romola D (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527 Nadeem SM, Ahmad ZZ, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149 Osman JR, Fernandes G, DuBow MS (2017) Bacterial diversity of the rhizosphere and nearby surface soil of rice (Oryza sativa) growing in the Camargue (France). Rhizosphere 3:112–122 Pierzynski GM, Sims JT, Vance GF (2005) Soils and environmental quality, 3rd edn. CRC Press Taylor & Francis Group, Florida Pikovaskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:363–370 Qi W, Zhao L (2013) Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 53:355–364 Rana M, Mark T (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 Roychoudhury A, Basu S (2008) Overexpression of an abiotic-stress inducible plant protein in the bacteria Escherichia coli. Afr J Biotechnol 7:3231–3234 Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160:47–56 Sharma A, Singh P, Kumar S, Kashyap P, Srivastava AK, Chakdar H, Singh R, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant bacilli from saline soils of Eastern Indo-gangetic plains of India. Geomicrobiol J 32:170–180 Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600 Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131 Singh RP, Jha P, Jha PN (2017) Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J Plant Growth Regul 36:783–798 Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhard PRGE, Wood MWA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–655 Sohaiba M, Zahir ZA, Khan MY, Ans M, Asghar HN, Yasin S, Al-Barakah FNI (2020) Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat. Saudi J Biol Sci 27:777–787 Turan V (2019) Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf 183:109594 Turan V, Schröder P, Bilen S, Insam H, Fernández-Delgado Juárez M (2019) Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties. Sci Rep 9:15178 Viraktamath B, Bentur J, Rao K, Sain M (2011) Vision 2030. Directorate of rice research, Hyderabad, pp 1–32 Yang G, Rhodes D, Joly RJ (1996) Effect of high temperature on membrane stability and chlorophyll fluorescence in glycine betaine-containing maize lines. Aust J Plant Physiol 23:431–443