Amberlyst-15, an efficient heterogeneous catalyst for the 1,4-dihydropyridine synthesis
Tóm tắt
Từ khóa
#1 #4-dihydropyridine #amberlyst-15 #heterogeneous catalystTài liệu tham khảo
D. J. Triggle, Biochem. Pharmacol. 74 (2007) 1-9. https://doi.org/10.1016/j.bcp.2007.01.016
F. Bossert, H. Meyer E. Wehinger, Angewandte Chemie International Edition in English 20 (1981) 762-769. https://doi.org/10.1002/anie.198107621
B. Loev, M. M. Goodman, M. K. Snader, R. Tedeschi E. Macko, J. Med. Chem. 17 (1974) 956-965. https://doi.org/10.1021/jm00255a010
D. Viradiya, S. Mirza, F. Shaikh, R. Kakadiya, A. Rathod, N. Jain, R. Rawal A. Shah, Anticancer Agents Med Chem 17 (2017) 1003-1013. https://doi.org/10.2174/1871520616666161206143251
A. Idhayadhulla, R. S. Kumar, A. J. A. Nasser, S. Kavimani S. Indhumathy, Pharm. Chem. J. 49 (2015) 463-466. https://doi.org/10.1007/s11094-015-1305-x
V. M. Gadotti, C. Bladen, F. X. Zhang, L. Chen, M. G. Gunduz, R. Simsek, C. Safak G. W. Zamponi, Pflugers Archiv : European journal of physiology 467 (2015) 2485-2493. https://doi.org/10.1007/ s00424-015-1725-1
T. Takenaka, S. Usuda, T. Nomura, H. Maeno T. Sado, Arzneimittel-Forschung 26 (1976) 2172-2178.
R. S. Kumar, A. Idhayadhulla, A. J. Nasser, S. Kavimani S. Indumathy, Indian journal of pharmaceutical sciences 72 (2010) 719-725. https://doi.org/10.4103/0250-474X.84580
L. M. Tarasenko, K. S. Neporada V. Klusha, Bull. Exp. Biol. Med. 133 (2002) 369-371. https://doi.org/ 10.1023/a:1016250121896
R. Budriesi, P. Ioan, A. Locatelli, S. Cosconati, A. Leoni, M. P. Ugenti, A. Andreani, R. Di Toro, A. Bedini, S. Spampinato, L. Marinelli, E. Novellino A. Chiarini, J. Med. Chem. 51 (2008) 1592-1600. https://doi.org/10.1021/jm070681+
A. Hantzsch, Justus Liebig's Annalen der Chemie 215 (1882) 1-82. https://doi.org/10.1002/jlac. 18822150102
M. De Luca, G. Ioele G. Ragno, Pharmaceutics 11 (2019) 85. https://doi.org/10.3390/pharmaceutics 11020085
M. Baumann I. R. Baxendale, Beilstein J Org Chem 9 (2013) 2265-2319. https://doi.org/10.3762/ bjoc.9.265
V. K. Sharma S. K. Singh, RSC Advances 7 (2017) 2682-2732. https://doi.org/10.1039/c6ra24823c
A. Debache, R. Boulcina, A. Belfaitah, S. Rhouati B. Carboni, Synlett 2008 (2008) 509-512. https://doi.org/10.1055/s-2008-1032093
L.-M. Wang, J. Sheng, L. Zhang, J.-W. Han, Z.-Y. Fan, H. Tian C.-T. Qian, Tetrahedron 61 (2005) 1539-1543. https://doi.org/10.1016/j.tet.2004.11.079
S. R. Cherkupally R. Mekala, Chem Pharm Bull (Tokyo) 56 (2008) 1002-1004. https://doi.org/ 10.1248/cpb.56.1002
S. Ko, M. N. V. Sastry, C. Lin C.-F. Yao, Tetrahedron Lett. 46 (2005) 5771-5774. https://doi.org/10.1016/ j.tetlet.2005.05.148
G. Sabitha, G. S. K. K. Reddy, C. S. Reddy J. S. Yadav, Tetrahedron Lett. 44 (2003) 4129-4131. https://doi.org/10.1016/s0040-4039(03)00813-x
N. Tewari, N. Dwivedi R. P. Tripathi, Tetrahedron Lett. 45 (2004) 9011-9014. https://doi.org/10.1016/ j.tetlet.2004.10.057
J. H. Lee, Tetrahedron Lett. 46 (2005) 7329-7330. https://doi.org/10.1016/j.tetlet.2005.08.137
S. Ko C.-F. Yao, Tetrahedron 62 (2006) 7293-7299. https://doi.org/10.1016/j.tet.2006.05.037
G. V. Sharma, K. L. Reddy, P. S. Lakshmi P. R. Krishna, Synthesis 2006 (2006) 55-58. https://doi.org/10.1055/s-2005-921744
S. Paul, R. Gupta, R. Gupta A. Loupy, Synthesis 2007 (2007) 2835-2838. https://doi.org/10.1055/ s-2007-983839
D. R. Patil D. S. Dalal, Lett. Org. Chem. 8 (2011) 477-483. https://doi.org/10.2174/157017811796504891
A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati B. Carboni, Tetrahedron Lett. 50 (2009) 5248-5250.https://doi.org/10.1016/j.tetlet.2009.07.018
F. Tamaddon, Z. Razmi A. A. Jafari, Tetrahedron Lett. 51 (2010) 1187-1189. https://doi.org/ 10.1016/j.tetlet.2009.12.098
X. Y. Wu, Synth. Commun. 42 (2011) 454-459. https://doi.org/10.1080/00397911.2010.525773
S. X. Wang, Z. Y. Li, J. C. Zhang J. T. Li, Ultrason. Sonochem. 15 (2008) 677-680. https://doi.org/ 10.1016/j.ultsonch.2008.02.009
H. Adibi, H. A. Samimi M. Beygzadeh, Catal. Commun. 8 (2007) 2119-2124. https://doi.org/10.1016/j.catcom.2007.04.022
M. Lei, L. Ma L. Hu, Synth. Commun. 41 (2011) 1969-1976. https://doi.org/10.1080/00397911.2010.494814
R. A. Sheldon R. S. Downing, Appl. Catal. A Gen. 189 (1999) 163-183. https://doi.org/10.1016/s0926-860x(99)00274-4
R. A. Sheldon J. Dakka, Catal. Today 19 (1994) 215-245. https://doi.org/10.1016/0920-5861(94)80186-x
S. Palaniappan A. John, J. Mol. Catal. A: Chem. 233 (2005) 9-15. https://doi.org/10.1016/j.molcata. 2005.02.002
M. Maheswara, V. Siddaiah, Y. K. Rao, Y.-M. Tzeng C. Sridhar, J. Mol. Catal. A: Chem. 260 (2006) 179-180. https://doi.org/10.1016/j.molcata.2006.07.024
A. M. Zonouz S. B. Hosseini, Synth. Commun. 38 (2008) 290-296. https://doi.org/10.1080/ 00397910701750003
E. Rafiee, S. Eavani, S. Rashidzadeh M. Joshaghani, Inorg. Chim. Acta 362 (2009) 3555-3562. https://doi.org/10.1016/j.ica.2009.03.049
A. Hantzsch, Ber. Dtsch. Chem. Ges. 14 (1881) 1637-1638. https://doi.org/10.1002/cber.18810140214
D. Elhamifar, H. Khanmohammadi D. Elhamifar, RSC Advances 7 (2017) 54789-54796. https://doi.org/ 10.1039/c7ra10758g
S. Baluja R. Talaviya, Int. J. Pharm., Chem. Biol. Sci. 5 (2015).
E. F. V. Scriven, Pyridines: From Lab to Production, Elsevier Science, 2013.
M. Filipan-Litvić, M. Litvić, I. Cepanec V. Vinković, Molecules 12 (2007) 2546-2558. https://doi.org/ 10.3390/12112546
P. A. Hopes, A. J. Parker I. Patel, Org. Process Res. Dev. 10 (2006) 808-813. https://doi.org/10.1021/ op060057r
P. F. Siril, H. E. Cross D. R. Brown, J. Mol. Catal. A: Chem. 279 (2008) 63-68. https://doi.org/10.1016/ j.molcata.2007.10.001
E. K. Ekinci, G. Gündüz N. Oktar, Int. J. Chem. React. Eng. 14 (2016) 309-314. https://doi.org/10.1515/ ijcre-2015-0012
N. I. Guzman Barrera, C. Bories, J. Peydecastaing, C. Sablayrolles, E. Vedrenne, C. Vaca-Garcia S. Thiebaud-Roux, Green Sustain. Chem. 8 (2018) 221-246. https://doi.org/10.4236/gsc.2018.83016