Alzheimer's disease: the cholesterol connection

Nature Neuroscience - Tập 6 Số 4 - Trang 345-351 - 2003
Luigi Puglielli1, Rudolph E. Tanzi2, Dora M. Kovacs1
1Neurobiology of Disease Laboratory, CAGN, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, Massachusetts, USA
2Genetics and Aging Research Unit, CAGN, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tanzi, R.E. & Bertram, L. New frontiers in Alzheimer's disease genetics. Neuron 32, 181–184 (2001).

Thinakaran, G. The role of presenilins in Alzheimer's disease. J. Clin. Invest. 104, 1321–1327 (1999).

Blacker, D. et al. Results of a high-resolution genome screen of 437 Alzheimer's Disease families. Hum. Mol. Genet. 12, 23–32 (2003).

Selkoe, D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, 23–31 (1999).

Price, D.L., Tanzi, R.E., Borchelt, D.R., & Sisodia, S.S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

Cao, X. & Sudhof, T.C. A transcriptionally active complex of APP with FE65 and histone acethyltransferase Tip60. Science 293, 115–120 (2001).

Kimberly, W.T., Zheng, J.B., Guenette, S.Y. & Selkoe, D.J. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a Notch-like manner. J. Biol. Chem. 276, 40288–40292 (2001).

Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264 (1997).

Bales, K.R. et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 96, 15233–15238 (1999).

Holtzman, D.M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897 (2000).

LaDu, M.J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406 (1994).

Naslund, J. et al. Characterization of stable complexes involving apolipoprotein E and the amyloid β peptide in Alzheimer's disease brain. Neuron 15, 219–228 (1995).

Yang, D.S. et al. Apolipoprotein E promotes the binding and uptake of beta-amyloid into Chinese hamster ovary cells in an isoform-specific manner. Neuroscience 90, 1217–1226 (1999).

Van Uden, E. et al. A protective role of the low density lipoprotein receptor–related protein against amyloid beta-protein toxicity. J. Biol. Chem. 275, 30525–30530 (2000).

Chung, H., Brazil, M.I., Soe, T.T. & Maxfield, F.R. Uptake, degradation and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J. Biol. Chem. 274, 32301–32308 (1999).

Ulery, P.G. et al. Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). J. Biol. Chem. 275, 7410–7415 (2000).

Herz, J. & Beffert, U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat. Rev. Neurosci. 1, 51–58 (2000).

Strittmatter, W.J. et al. Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 8098–8102 (1993).

Ma, J., Yee, A., Brewer, H.B. Jr., Das, S. & Potter, H. Amyloid-associated proteins alpha1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372, 92–94 (1994).

Sanan, D.A. et al. Apolipoprotein E associates with β amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. 94, 860–869 (1994).

Holtzman, D.M. Role of apoE/Abeta interactions in the pathogenesis of Alzheimer's disease and cerebral amyloid angiopathy. J. Mol. Neurosci. 17, 147–155 (2001).

Fagan, A.M. et al. Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol. Dis. 9, 305–318 (2002).

Ehnholm, C., Lukka, M., Kuusi, T., Nikkila, E. & Utermann, G. Apolipoprotein E polymorphism in the Finnish population: gene frequencies and relation to lipoprotein concentrations. J. Lipid Res. 27, 227–235 (1986).

Boerwinkle, E. et al. The use of measured genotype information in the analysis of quantitative phenotypes in man. II. The role of the apolipoprotein E polymorphism in determining levels, variability, and covariability of cholesterol, betalipoprotein, and triglycerides in a sample of unrelated individuals. Am. J. Med. Genet. 27, 567–582 (1987).

Papassotiropoulos, A. et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res. 36, 27–32 (2002).

Jarvik, G.P. et al. Interaction of apolipoprotein E genotype, total cholesterol level, and sex in prediction of Alzheimer disease in a case-control study. Neurology 45, 1092–1096 (1995).

Kuo, Y.M. et al. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain Aβ 1-42 levels. Biochem. Biophys. Res. Commun. 252, 711–715 (1998).

Fernandes, M.A. et al. Effects of apolipoprotein E genotype on blood lipid composition and membrane platelet fluidity in Alzheimer's disease. Biochim. Biophys. Acta. 1454, 89–96 (1999).

Knebl, J. et al. Plasma lipids and cholesterol esterification in Alzheimer's disease. Mech. Ageing Dev. 73, 69–77 (1994).

Hofman, A. et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam study. Lancet 349, 151–154 (1997).

Mori, T. et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60, 778–785 (2001).

Jick, H., Zornberg, G.L., Jick, S.S., Seshadri, S. & Drachman, D.A. Statins and the risk of dementia. Lancet 356, 1627–1631 (2000).

Wolozin, B. & Behl, C. Mechanisms of neurodegenerative disorders: protein aggregates. Arch. Neurol. 57, 793–796 (2000).

Yaffe, K., Barrett-Connor, E., Lin, F. & Grady, D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch. Neurol. 59, 378–384 (2002).

Rockwood, K. et al. Use of lipid-lowering agents, indication bias and the risk of dementia in community-dwelling elderly people. Arch. Neurol. 59, 223–227 (2002).

Simons, M. et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52, 346–350 (2002).

Shepherd, J. et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360, 1623–1630 (2002).

Petanceska, S., Papolla, M. & Refolo, L. Modulation of Alzheimer's amyloidosis by statins: mechanism of action. Curr. Med. Chem. Imun. Endocrinol. Metab. Agents 3, 233–243 (2003).

Corsini, A. Fluvastatin: effects beyond cholesterol lowering. J. Cardiovasc. Pharmacol. Ther. 5, 161–175 (2000).

Sparks, D.L. et al. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94 (1994).

Sparks, D.L., Kuo, Y.M., Roher, A., Martin, T. & Lukas, R.J. Alterations of Alzheimer's disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann. NY Acad. Sci. 903, 335–344 (2000).

Refolo, L.M. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331 (2000).

Refolo, L.M. et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 8, 890–899 (2001).

Howland, D.S. et al. Modulation of secreted β-amyloid precursor protein and amyloid β-peptide in brain by cholesterol. J. Biol. Chem. 273, 16576–16582 (1998).

Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease beta- amyloid peptides Aβ 42 and Aβ 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98, 5856–5861 (2001).

Refolo, L.M., Wittenberg, I.S., Friedrich V.L. Jr. & Robakis, N.K. The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J. Neurosci. 11, 3888–3897 (1991).

Lee, S.J. et al. A detergent-insoluble membrane compartment contains Aβ in vivo. Nat. Med. 4, 730–734 (1998).

Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).

Choo-Smith, L.P. & Surewicz, W.K. The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 402, 95–98 (1997).

Yanagisawa, K., McLaurin, J., Michikawa, M., Chakrabartty, A. & Ihara, Y. Amyloid beta-protein (Aβ) associated with lipid molecules: immunoreactivity distinct from that of soluble Aβ. FEBS Lett. 420, 43–46 (1997).

Yanagisawa, K., Odaka, A., Suzuki, N. & Ihara, Y. GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer's disease. Nat. Med. 1, 1062–1066 (1995).

Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 6460–6464 (1998).

Frears, E.R., Stephens, D.J., Walters, C.E., Davies, H. & Austen, B.M. The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport 10, 1699–1705 (1999).

Bodovitz, S. & Klein, W.L. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271, 4436–4440 (1996).

Racchi, M. et al. Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem. J. 322, 893–898 (1997).

Kojro, E., Gimpl, G., Lammich, S., Marz, W. & Fahrenholz, F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 98, 5815–5820 (2001).

Runz, H. et al. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci. 22, 1679–1689 (2002).

Fukumoto, H., Deng, A., Irizarry, M.C., Fitzgerald, M.L. & Rebeck, G.W. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor aginists increases secreted Aβ levels. J. Biol. Chem. 277, 48508–48513 (2002).

Puglielli, L. et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell Biol. 3, 905–912 (2001).

Chang, T.Y. et al. Roles of acyl-coenzyme A: cholesterol acyltransferase-1 and -2. Curr. Opin. Lipidol. 12, 289–296 (2001).

Chang, T.Y., Chang, C.C., Lu, X. & Lin, S. Catalysis of ACAT may be completed within the plane of the membrane. A working hypothesis. J. Lipid Res. 42, 1933–1938 (2001).

Brown, M.S. & Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells and blood. Proc. Natl. Acad. Sci. USA 96, 11041–11048 (1999).

Tschape, J.A. et al. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J. 21, 6367–6376 (2002).

Dietschy, J.M. & Turley, S.D. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105–112 (2001).

Snipes, G.J. & Suter, U. Cholesterol and myelin. in Subcellular Biochemistry. Cholesterol: its Functions and Metabolism in Biology and Medicine (ed. Bittman, R.) 173–204 (Plenum Press, New York, 1997).

Accad, M. et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA: cholesterol acyltransferase 1. J. Clin. Invest. 105, 711–719 (2000).

Haley, R.W. & Dietschy, J.M. Is there a connection between the concentration of cholesterol circulating in plasma and the rate of neuritic plaque formation in Alzheimer disease? Arch. Neurol. 57, 1410–1412 (2000).

Salen, G. & Grundy, S.M. The metabolism of cholestanol, cholesterol and bile acids in cerebrotendinous xanthomatosis. J. Clin. Invest. 52, 2822–2835 (1973).

Salen, G. et al. Increased concentrations of cholestanol and apolipoprotein B in the cerebrospinal fluid of patients with cerebrotendinous xanthomatosis. Effect of chenodeoxycholic acid. N. Engl. J. Med. 316, 1233–1238 (1987).

Bjorkem, I. & Boberg, K.M. Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol. in The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2073–2099 (McGraw-Hill, New York, 1995).