Alzheimer’s disease pathological lesions activate the spleen tyrosine kinase

Acta Neuropathologica Communications - Tập 5 - Trang 1-25 - 2017
Jonas Elias Schweig1,2, Hailan Yao1,3, David Beaulieu-Abdelahad1, Ghania Ait-Ghezala1,3, Benoit Mouzon1,4,3, Fiona Crawford1,4,3, Michael Mullan1,4, Daniel Paris1,4,3
1The Roskamp Institute, Sarasota, USA
2The Open University, Milton-Keynes, UK
3James A. Haley Veterans' Hospital, Tampa, USA
4The Open University, Milton Keynes, UK

Tóm tắt

The pathology of Alzheimer’s disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.

Tài liệu tham khảo

Bugiani O, Murrell JR, Giaccone G et al (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 58(6):667–677 Cai Y, Zhang X-M, Macklin LN et al (2012) BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer's disease: differential Abeta antibody labeling of early-onset axon terminal pathology. Neurotox Res 21(2):160–174. doi:10.1007/s12640-011-9256-9 Combs CK, Johnson DE, Cannady SB et al (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci 19(3):928–939 Combs CK, Karlo JC, Kao SC et al (2001) Beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21(4):1179–1188 Derkinderen P, Scales TME, Hanger DP et al (2005) Tyrosine 394 is Phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine Kinase. J Neurosci 25(28):6584–6593. doi:10.1523/JNEUROSCI.1487-05.2005 Faruki S, Geahlen RL, Asai DJ (2000) Syk-dependent phosphorylation of microtubules in activated B-lymphocytes. J Cell Sci 113(Pt 14):2557–2565 Gauthier S, Feldman HH, Schneider LS et al (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388(10062):2873–2884. doi:10.1016/S0140-6736(16)31275-2 Geahlen RL (2014) Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci 35(8):414–422. doi:10.1016/j.tips.2014.05.007 Gordon MN, Holcomb L, Jantzen PT et al (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173(2):183–195. doi:10.1006/exnr.2001.7754 Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133(5):665–704. doi:10.1007/s00401-017-1707-9 Han C, Jin J, Xu S et al (2010) Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 11(8):734–742. doi:10.1038/ni.1908 Holcomb L, Gordon MN, McGowan E et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4(1):97–100 Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102 Huang Z-Y, Barreda DR, Worth RG et al (2006) Differential kinase requirements in human and mouse Fc-gamma receptor phagocytosis and endocytosis. J Leukoc Biol 80(6):1553–1562. doi:10.1189/jlb.0106019 Irizarry MC, McNamara M, Fedorchak K et al (1997) APPSw transgenic mice develop age-related a beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56(9):965–973 Kandalepas PC, Sadleir KR, Eimer WA et al (2013) The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126(3):329–352. doi:10.1007/s00401-013-1152-3 Kober DL, Brett TJ (2017) TREM2-Ligand interactions in health and disease. J Mol Biol 429(11):1607–1629. doi:10.1016/j.jmb.2017.04.004 Lanier LL, Bakker AB (2000) The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today 21(12):611–614. doi:10.1016/S0167-5699(00)01745-X Le Couteur DG, Hunter S, Brayne C (2016) Solanezumab and the amyloid hypothesis for Alzheimer's disease. BMJ 355:i6771. doi:10.1136/bmj.i6771 Lebouvier T, Scales TM, Williamson R et al (2009) The microtubule-associated protein tau is also phosphorylated on tyrosine. J Alzheimers Dis 18(1):1–9. doi:10.3233/JAD-2009-1116 Lin K-C, Huang D-Y, Huang D-W et al (2016) Inhibition of AMPK through Lyn-Syk-Akt enhances FcepsilonRI signal pathways for allergic response. J Mol Med (Berl) 94(2):183–194. doi:10.1007/s00109-015-1339-2 Lossos A, Reches A, Gal A et al (2003) Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family. J Neurol 250(6):733–740. doi:10.1007/s00415-003-1074-4 McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 17(7):2284–2294 McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497. doi:10.1007/s00401-013-1177-7 Nisbet RM, Polanco J-C, Ittner LM et al (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129(2):207–220. doi:10.1007/s00401-014-1371-2 Ossenkoppele R, van Berckel BN, Prins ND (2011) Amyloid imaging in prodromal Alzheimer's disease. Alzheimers Res Ther 3(5):26. doi:10.1186/alzrt88 Paloneva J, Manninen T, Christman G et al (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71(3):656–662. doi:10.1086/342259 Paris D, Ait-Ghezala G, Bachmeier C et al (2014) The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-beta production and tau hyperphosphorylation. J Biol Chem 289(49):33927–33944. doi:10.1074/jbc.M114.608091 Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477. doi:10.1007/s00401-013-1182-x Sada K, Takano T, Yanagi S et al (2001) Structure and function of Syk protein-tyrosine Kinase. J Biochem 130(2):177–186 Sadleir KR, Kandalepas PC, Buggia-Prevot V et al. (2016) Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Abeta generation in Alzheimer’s disease. Acta Neuropathol doi:10.1007/s00401-016-1558-9 Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E et al (2012) Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathol 123(1):53–70. doi:10.1007/s00401-011-0896-x Satoh J-I, Tabunoki H, Ishida T et al (2012) Phosphorylated Syk expression is enhanced in Nasu-Hakola disease brains. Neuropathology 32(2):149–157. doi:10.1111/j.1440-1789.2011.01256.x Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019 Schmidt ML, DiDario AG, Lee VM et al (1994) An extensive network of PHF tau-rich dystrophic neurites permeates neocortex and nearly all neuritic and diffuse amyloid plaques in Alzheimer disease. FEBS Lett 344(1):69–73 Shepherd C, McCann H, Halliday GM (2009) Variations in the neuropathology of familial Alzheimer's disease. Acta Neuropathol 118(1):37–52. doi:10.1007/s00401-009-0521-4 Siemers ER, Sundell KL, Carlson C et al (2016) Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients. Alzheimers Dement 12(2):110–120. doi:10.1016/j.jalz.2015.06.1893 Sperfeld AD, Collatz MB, Baier H et al (1999) FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann Neurol 46(5):708–715 St-Amour I, Cicchetti F, Calon F (2016) Immunotherapies in Alzheimer’s disease: too much, too little, too late or off-target? Acta Neuropathol 131(4):481–504. doi:10.1007/s00401-015-1518-9 Su JH, Cummings BJ, Cotman CW (1993) Identification and distribution of axonal dystrophic neurites in Alzheimer's disease. Brain Res 625(2):228–237 Thal DR, Walter J, Saido TC et al (2015) Neuropathology and biochemistry of Abeta and its aggregates in Alzheimer's disease. Acta Neuropathol 129(2):167–182. doi:10.1007/s00401-014-1375-y Viola KL, Klein WL (2015) Amyloid beta oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206. doi:10.1007/s00401-015-1386-3 Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351. doi:10.1016/j.neuron.2007.01.010 Yu Y, Gaillard S, Phillip JM et al (2015) Inhibition of spleen tyrosine Kinase potentiates Paclitaxel-induced Cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 28(1):82–96. doi:10.1016/j.ccell.2015.05.009 Zhang X-M, Cai Y, Xiong K et al (2009) Beta-secretase-1 elevation in transgenic mouse models of Alzheimer's disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci 30(12):2271–2283. doi:10.1111/j.1460-9568.2009.07017.x