Alzheimer's disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss

Yuesong Gong1, Lei Chang1, Kirsten L. Viola1, Pascale N. Lacor1, Mary P. Lambert1, Caleb E. Finch1, Grant A. Krafft1, William L. Klein1
1Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208; Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089; and Acumen Pharmaceuticals, Glenview, IL 60025

Tóm tắt

A molecular basis for memory failure in Alzheimer's disease (AD) has been recently hypothesized, in which a significant role is attributed to small, soluble oligomers of amyloid β-peptide (Aβ). Aβ oligomeric ligands (also known as ADDLs) are known to be potent inhibitors of hippocampal long-term potentiation, which is a paradigm for synaptic plasticity, and have been linked to synapse loss and reversible memory failure in transgenic mouse AD models. If such oligomers were to build up in human brain, their neurological impact could provide the missing link that accounts for the poor correlation between AD dementia and amyloid plaques. This article, using antibodies raised against synthetic Aβ oligomers, verifies the predicted accumulation of soluble oligomers in AD frontal cortex. Oligomers in AD reach levels up to 70-fold over control brains. Brain-derived and synthetic oligomers show structural equivalence with respect to mass, isoelectric point, and recognition by conformation-sensitive antibodies. Both oligomers, moreover, exhibit the same striking patterns of attachment to cultured hippocampal neurons, binding on dendrite surfaces in small clusters with ligand-like specificity. Binding assays using solubilized membranes show oligomers to be high-affinity ligands for a small number of nonabundant proteins. Current results confirm the prediction that soluble oligomeric Aβ ligands are intrinsic to AD pathology, and validate their use in new approaches to therapeutic AD drugs and vaccines.

Từ khóa


Tài liệu tham khảo

10.1126/science.1072994

10.1002/jnr.10328

Klein W. L. (2000) in Molecular Mechanisms of Neurodegenerative Diseases ed. Chesselet M.-F. (Humana Totowa NJ) pp. 1-49.

10.1038/325733a0

10.1038/349704a0

10.1126/science.290.5500.2303

10.1146/annurev.biochem.66.1.385

10.1016/0006-291X(84)91209-9

10.1073/pnas.82.12.4245

10.1021/bi00069a001

10.1073/pnas.91.25.12243

10.1523/JNEUROSCI.13-04-01676.1993

10.1126/science.1566067

Terry R. D. (1999) in Alzheimer Disease eds. Terry R. D. Katzman R. Bick K. L. & Sisodia S. S. (Lippincott Williams & Wilkins Philadelphia) pp. 187-206.

10.1523/JNEUROSCI.20-11-04050.2000

10.1016/S0166-2236(00)01749-5

10.1016/S0197-4580(01)00312-8

10.1073/pnas.95.11.6448

10.1038/416535a

10.1016/S0006-8993(01)03058-X

10.1038/35050116

10.1038/nn842

10.1523/JNEUROSCI.22-15-06331.2002

10.1126/science.1074069

Lambert, M. P., Viola, K. L., Chromy, B. A., Chang, L., Morgan, T. E., Yu, J., Venton, D. L., Krafft, G. A., Finch, C. E. & Klein, W. L. (2001) J. Neurochem. 79, 595-605.11701763

10.1016/S0197-0186(02)00050-5

10.1002/jnr.490350513

10.1523/JNEUROSCI.17-12-04633.1997

10.1002/(SICI)1522-2683(19990101)20:4/5<917::AID-ELPS917>3.0.CO;2-6

10.1091/mbc.9.6.1425

10.1016/S0021-9258(18)47238-9

10.3109/13506129908993283

10.1096/fj.01-0377com

10.1385/CBB:36:2-3:191

10.1083/jcb.148.4.801

10.1038/35036052

10.1083/jcb.200207113

10.1021/bi0255874

10.1523/JNEUROSCI.21-02-00504.2001

10.1038/416507a

Chang L. Gong Y. Bakhos L. Yu J. Venton D. L. & Klein W. L. (2003) J. Mol. Neurosci. in press.

10.1523/JNEUROSCI.19-20-08876.1999

10.1038/nm0798-832

10.1074/jbc.M010450200

10.1126/science.1065983

10.1523/JNEUROSCI.22-05-01532.2002

10.1016/0166-2236(94)90077-9

10.1097/00001756-199304000-00024

10.1073/pnas.111146298

10.1038/nn779

10.1038/nm0302-199b

10.1074/jbc.M111402200