Alzheimer’s disease: A hypothesis on pathogenesis

Springer Science and Business Media LLC - Tập 23 - Trang 147-161 - 2000
Denham Harman1
1Department of Medicine, University of Nebraska College of Medicine, Omaha

Tóm tắt

Alzheimer’s disease (AD) is the major cause of dementia. It is a systemic disorder whose major manifestations are in the brain. AD cases can be categorized into two groups on the basis of the age of onset-before or after about age 60. The majority of cases, 90–95 percent, are in the late onset category. Early onset cases are largely, if not all, familial (FAD). These are caused by mutations in the genes for the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). In contrast late onset cases are mainly sporadic. The disorder is characterized by intraneuronal fibrillary tangles, plaques, and cell loss. The brain lesions in both early and late-onset AD are the same, and in the same distribution pattern, as those seen in individuals with Down’s syndrome (DS) and in smaller numbers in normal older individuals. Extensive studies of AD have yet to result in a generally accepted hypothesis on the pathogenesis of the disorder. Major emphasis has been placed on the role of amyloid, the neurotoxin formed by the action of free radicals on preamyloid. The observation that AD lesions are frequently present in normal older individuals prompted the hypothesis that AD is the result of faster than normal aging of the neurons associated with it. This hypothesis provides plausible explanations for FAD and AD. FAD is associated with mutations in APP, PS1, and PS2. These substances, along with their normal counterparts, undergo proteolytic processing in the endoplasmic reticulum (ER). The mutated compounds, aside from increasing the ratio of βA42 to βA40, may down-regulate the calcium buffering activity of the ER in a manner akin to one or more of the many compounds known to do so. Decreases in the ER calcium pool would cause compensatory increases in other calcium pools, particularly in mitochondria. Increases in mitochondrial calcium levels are associated with enhanced formation of superoxide radical formation, and hence of the rate of aging. SAD may be caused by nuclear and/or mitochondrial DNA mutations beginning early in life that enhance mitochondrial superoxide radical formation in the neurons associated with the disorder. The above explanations for FAD and AD are suggestive of measures to prevent and for treatment.

Tài liệu tham khảo

Katzman, R.: Alzheimer’s disease. New. Eng. J. Med., 314: 964–973, 1986. Goedert, M., Strittmatter, J., and Roses, A. D.: Risky apolipoprotein in brain. Nature, 372: 45–46, 1994. Nalbantoglu, J., Lacoste-Royal, G., and Gauvreau, D.: Genetic factors in Alzheimer’s disease. J. Amer. Geriatr. Soc., 38: 564–568, 1990. Breitner, J. C. S., Murphy, E. A., Silverman, J. M., Mohs, R. C., and Davis, K. L.: Age-dependent expression of familial risk in Alzheimer’s disease. Amer. J. Epidemiology, 128: 536–548, 1988. Schellenberg, G. D., Birdd, T. D., Wijsman, E. M., Orr, H. T., Anderson, L., Nemens, E., White, J. A., Bonnycastle, L., Weber, J.L., Alonso, M. E., Potter, H., Heston, L. L., and Martin, G. M.: Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science, 258: 668–671, 1992. Levy-Lahad, E. W., Wijsman, E. M., Nemens, E., Anderson, L., Goddard, K. A. B., Weber, J. L., Bird, T. D., and Schellenberg, G. D.: A familial Alzheimer’s disease locus on chromosome 1. Science, 269: 970–973, 1995. Goate, A., Chartier-Harlin, M.-C., and Mullah, M., et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349: 704–706, 1991. Katzman, R., and Saitoh, T.: Advances in Alzheimer’s disease. FASEB J., 5: 278–286, 1991. Baker, A. C., Ko, L.-W., and Blass, J. P.: Systemic manifestations of Alzheimer’s disease. Age, 11: 60–65, 1988. Katzman, R., and Jackson, J. E.: Alzheimer disease: basic and clinical advances. J. Amer. Geriatrics Soc., 39: 516–525, 1991. McKee, A. C., Kosik, K. S., and Kowall, N. W.: Neuritic pathology and dementia in Alzheimer’s disease. Ann. Neurol., 30: 156–165, 1991. Terry, R. D.: Ultrastructural alterations in senile dementia, in Alzheimer’s Disease: Senile Dementia and Related Disorders, edited by Katzman, R., Terry, R. D., and Bick, K. L., New York, Raven Press, 1978, pp. 375–382. Terry, R. D., Masliak, E., and Hansen, L A.: Structural basis of the cognitive alterations in Alzheimer disease, edited by Terry, R. D., Katzman, R., and Bick, K. D., New York, Raven Press, pp. 179–196. Harman, D.: Free radical theory of aging: Alzheimer’s disease pathogenesis. Age, 18: 97–119, 1995 Folstein, M. F., and Bylsma, F. W.: Noncognitive symptoms of Alzheimer’s disease, in Alzheimer Disease, edited by Terry, R. D., Katzmann, R., and Bick, K. L., New York, Raven Press, 1994, pp. 27–40. Reisberg, B.: Clinical presentation, diagnosis, and symptomatology of age-associated cognitive decline and Alzheimer’s disease, in Alzheimer’s Disease, edited by Reisberg, B., New York, The Free Press, 1983, pp. 173–187. Berg, L., and Morris, J. C., Diagnosis, in Alzheimer’s Disease, edited by Terry, R. D., Katzman, R., and Bick, K. L., New York, Raven Press, pp. 9–25. Mann, D. M. A., and Esiri, M. M.: The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J. Neurol. Sci., 89: 169–179, 1989. Crystal, H., Dickson, D., and Fuld, P., et. al.: Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurol., 38: 1682–1687, 1988. Arriagada, P. V., Marzloff, K., and Hyman, B. T.: Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurol., 42: 1681–1688, 1992. Peterson, C., and Goldman, J. E.: Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer’s donors. Proc. Natl. Acad. Sci., USA, 83: 2758–2762, 1986. Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R.J.: Evidence for a membrane defect in Alzheimer’s disease brain. Proc. Natl. Acad. Sci., USA, 89: 1671–1675, 1992. Bossman, G. J. C. G. M., Bartholomeus, I. G. P., and de Grip, W.J.: Alzheimer’s disease and cellular aging: membrane-related events as clues to primary mechanisms. Gerontol., 37: 95–112, 1991. Parker, Jr., W. D., Filley, C. M., and Parks, J. K.: Cytochrome oxidase deficiency in Alzheimer’s disease. Neurol., 40: 1302–1303, 1990. Hafner, H.: Epidemiology of Alzheimer’s disease, in Alzheimer’s Disease: Epidemiology, Neuropathology, Neurochemistry, and Clinics, edited by Maurer, K., Riederer, P., and Beckmann, H., New York, Springer-Verlag, 1990, pp. 23–39. Editorial: Amyloid and Alzheimer’s disease. Nature Med., 4: 745, 1998. Gasparini, L, Racchi, M., Binetti, G., Trabucchi, M., Solerte, S. B., Alkon, D., Etcheberrigaray, R., Gibson, G., Blass, J., Paoletti, R. and Govoni, S.: Peripheral markers in testing pathophysiological hypotheses and diagnosing Alzheimer’s disease. FASEB J., 12: 17–34, 1998. Selkoe, D. J.: Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399(Suppl.): A23–A31, 1999. Yankner, B. A.: Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron, 16: 921–932, 1996. Hardy, J. A. and Higgins, G. A.: Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256: 134–184, 1992. Yankner, B. A.: New clues to Alzheimer’s disease: unraveling the roles of amyloid and tau. Nature Med., 2:850–852, 1996. Selkoe, D. J.: Alzheimer’s disease: genotypes, phenotypes, and treatments. Science, 275: 630–631, 1997. Dickson, D. W.: The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol., 56: 321–338, 1997. Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K.: Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem., 267: 18210–18217, 1992. Terry, R. D.: The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exper. Neurol., 55: 1023–1025, 1996. Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuth, K., Selkoe, D. J., and Haass, C.: The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem., 273:3205–3211, 1998. De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K., and Van Leuven, F.: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 391:387–390, 1998. Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T. and Selkoe, D. J.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature, 398: 513–517, 1999. Murphy, M. P., Hickman, L. J., Eckman, C. B., Uljon, S. N., Wang, R., and Golde, T. E.: γ-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid β peptides of varying length. J. Biol. Chem., 274: 11914–11923, 1999. Annaert, W. and De Strooper, B.: Presenilins: molecular switches between proteolysis and signal transduction. TINS, 22: 439–443, 1999. Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., Westaway, D., St George-Hyslop, P., Cordell, B., Fraser, P., and De Strooper, B.: Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J.Cell Biol., 147: 277–294, 1999. Kimberly, W. T., Xia, W., Rahmati, T., Wolfe, M. S., and Selkoe, D. J.: The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J. Biol. Chem., 275: 3173–3178, 2000. Querfurth, H. W. and Selkoe, D. J.: Calcium ionophore increases amyloid β peptide production by cultured cells. Biochem., 33: 4550–4561, 1994. Blanchard, B. J., Konopka, G., Russell, M., and Ingram, V. M.: Mechanism and prevention of neurotoxicity caused by β-amyloid peptides: relation to Alzheimer’s disease. Brain Res., 776: 40–50, 1997. Sheehan, J. P., Swerdlow, R. H., Miller, S. W., Davis, R. E., Parks, J. K., Parker, W. D., and Tuttle, J. B.: Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci., 17: 4612–4622, 1997. Guo, Q., Fu, W., Holtsberg, F. W., Steiner, S. M., and Mattson, M. P.: Superoxide mediates the cell-death-enhancing action of presenilin-1 mutations. J. Neurosci., 56: 457–470, 1999. Mattson, M. P., Zhu, H., Yu, J., Kindy, M. S.: Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci., 20: 1358–1364, 2000. McGeer, P. L. and McGeer, E. D.: The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res., 21: 195–218, 1995. Mrak, R. E, Sheng, J. G., and Griffin, W. S. T.: Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol.: 26: 816–823, 1995. Eikelenboom, P. and Veerhuis, R.: The role of complement and activated microglia in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging., 17: 673–680, 1996. Wong, M-L., Bongiorno, P. B., Rettori, V., McCann, S. M., and Licinio, J.: Interleukin (IL) 1β, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications. Proc. Natl. Acad. Sci. USA, 94: 227–232, 1997. Eikelenboom, P., Rozemuller, J. M., and van Muisinkel, F. L.: Inflammation and Alzheimer’s disease: relationships between pathogenic mechanisms and clinical expression. Exper. Neurol., 154: 89–98, 1998. Floyd, R. A.: Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Rad. Bio. Med., 26: 1346–1355, 1999. Wood, S. J., Chan, W., and Wetzel, R.: Seeding of Aβ fibril formation is inhibited by all three isotopes of apolipoprotein E. Biochem., 35: 12623, 12628, 1996. Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., and Dobson, C. M.: Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA, 95: 4224–4228, 1998. Christen, Y.: Oxidative stress and Alzheimer disease. Am. J. 5 Clin. Nutr., 71: 621S–629S, 2000. Mecocci P., MacGarvey, U., and Beal, M. F.: Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol., 36: 747–751, 1994. Harman, D.: Free radical theory of aging: a hypothesis on pathogenesis of senile dementia of the Alzheimer’s type. Age, 16: 23–30, 1993. Harman, D.: Aging: phenomena and theories. Ann. N.Y. Acad. Sci., 850: 1–7, 1998. Harman, D.: Aging: prospects for further increases in the functional life span. Age, 17:119–146, 1994. Jones, H.R.: The relation of human health to age, place and time, in Handbook of Aging and the Individual, edited by Birren J. E., Chicago, Chicago University Press, 1955, pp. 333–363. Sveriges Officiella Statistik. Befolknings forandringar. Livslangstabeller, 1951–1993. Statistiska centralbyran, Stockholm, Sweden, 1993, 1993: 114–15. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol, 11: 298–300, 1956. Harman, D.: Free radical theory of aging: history, edited by Emerit, I. and Chance, B., Basel, Birkhauser, 1992, pp. 1–10. Harman, D.: The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20: 145–147, 1972. Harman, D.: Free radical theory of aging: consequences of mitochonddal aging. Age, 6: 86–94, 1983. Harman, D.,: Free radical theory of aging: the “free radical” diseases. Age, 7: 111–131, 1984. Halliwell, B. and Gutteridge, J. M. C.: Free Radicals in Biology and Medicine, 2nd edition, Oxford, Clarendon Press, 1989. Harman, D.: Free radical theory of aging: effect of free radical inhibitors on the mortality rate of male LAF1 mice. J. Gerontol., 23: 476–482, 1968. Comfort, A.: Effect of ethoxyquin on the longevity of C3H mice. Nature, 229: 254–255, 1971. Harman, D. and Eddy, D. E.: Free radical theory of aging: beneficial effects of adding antioxidants to the maternal mouse diet on life span of offspring: possible explanation of the sex difference in longevity. Age, 2: 109–122, 1979. Mackler, B., Grace, R., and Duncan, H. M.: Studies of mitochondrial development during embryogenesis in the rat. Arch. Biochem. Biophys., 144: 603–610, 1971. Fanterl, A. G., Person, R. E., Tumbic, R. W., Nguyen, T.-D., and Mackler, B.: Studies of mitochondria in oxidative embryotoxicity. Teratol., 52: 190–195, 1995. Mcfadyen, I. R., Worth, H. G. J., Wright, D. J., et. al.,: High oestrogen excretion in pregnancy. Br. J. Obster. Gynaecol., 87: 81–86, 1980. Liehr, J. G.: Genotoxic effects of estrogens, Mutat. Res., 238: 269–276, 1990. Iwasa, D. Aono, T., and Fukuzawa, K.: Protective effect of vitamin E on fetal distress induced by ischemia of the uteroplacental system in pregnant rats. Free Rad. Biol. Med., 8: 393–400, 1990. Fantel, A. G., Barber, C. V., and Mackler, B.: Ischemia/reperfusion: a new hypothesis for the developmental toxicity of cocaine. Teratology, 46: 285–292, 1992. Rosen, D. R., Siddique, T., Patterson, D. et. al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362: 59–62, 1993. Nakazono, K., Watanabe, N., Matsuno, K., Saski, J., Sato, T., and Inoue, M.: Does superoxide underlie the pathogenesis of hypertension? Proc. Natl. Acad. Sci. USA, 88: 10045–10049, 1991. Harman, D.: Aging: minimizing free radical damage. J. Anti-Aging Med., 2: 15–36, 1999. Curhan, G. C., Willett, W. C., Rimm, E. B., et. al.: Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation, 94: 3246–3250, 1996. Davies, C. A. and Mann, D. M. A.: Is the “preamyloid” of diffuse plaques in Alzheimer’s disease really nonfibrillar? Am. J. Pathol, 143: 1594–1605, 1993. Sohal, R. S. and Sohal B. H.: Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev., 57: 187–202, 1991. Barja, G., Cadenas, S., Rojas, C., et. al.: Low mitochondrialfree radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radical Res., 21: 317–328, 1994. Verhasselt, V., Goldman, M., and Willems, F.: Oxidative stress up-regulates IL-8 and TNF-α synthesis by human dendritic cells. Eur. J. Immunol., 28: 3886–3890. Lue, L-F., Brachova, L., Civin, W. H., and Rogers, J.: Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathology and Exper. Neurol., 55: 1083–1088, 1996. Schreck, R., Riesbesr, P., and Baeuerle, A.: Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-I. EMBO J., 10: 2247–2258, 1991. Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y., Dong, L-M., Salvesen, G. S., Pericak-Vance, M., Schmechel, D., Saunders, A. M., Goldgaber, D., and Roses, A. D.: Binding of human apolipoprotein E to synthetic amyloid β peptide: Isoform-specific effects and implications for late-onset Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 90: 8098–8102, 1993. Larsson, N.-G. and Luft, R.: Revolution in mitochondrial medicine. FEBS Lett., 455: 199–202, 1999. Bonilla, E., Tanji, K., Hirano, M., et. al.: Mitochondrial involvement in Alzheimer’s disease. Biochim. Biophys. Acta, 1410: 171–182, 1999. Brown, M. D., Shoffner, J. M., Kim, Y. L., et.al.: Mitochondrial DNA sequence analysis of four Alzheimer’s and Parkinson’s disease patients. Am. J. Med. Genet., 61: 283–289, 1996. Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobsu, L. A., Galasko, D., Thal, L.J., Beal, M. F., Howell, N., and Parker, Jr., W. D.: Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 94: 4526–4531, 1997. Shoffner, J. M., and Wallace, D. C.: Oxidative phosphorylation diseases: disorders of two genomes. Adv. Hum. Genet., 19: 267–330, 1990. Wallace, D. C.: Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science, 256: 628–632, 1992. Holt, I. J., Harding, A. E., Cooper, J. M., Schapira, A. H. V., Toscano, A., Clark, J. B., and Morgan-Hughes, J. A.: Mitochondrial myopathies: clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA. Ann. Neurol. 26: 699–708, 1989. Moraes, C. T., DiMauro, S., Zeviani, M., et. al.: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N. Engl. J. Med., 320: 1293–1299, 1989. Hardy, J.: Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci., 20: 154–159, 1997. Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J.M., Masters, C. L., and Beyreuther, K.: Identification, biogenesis and location of precursors of Alzheimer’s disease A4 amyloid protein. Cell, 57: 115–126, 1989. Yu, G., Chen, F., Levesque, G., Nishimura, M., Zhang, D-M, Levesque, L, Rogaeva, E., Xu, D., Liang, Y., Duthie, M., St George-Hyslop, P., and Fraser, P. E.: The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem., 273: 16470–16475, 1998. Jacobsen, H., Resinhardt, D., Brockhaust, M., Bur, D., Kocyba, C., Kurt, H., Grim, M. G., Baumeister, R., and Loetscher, H.: The influence of endoproteolytic processing of familial Alzheimer’s disease presenilin 2 on Aβ 42 amyloid peptide formation. J. Biol.Sci., 274: 35233–35239, 1999. Marzella, L., and Glaumann, H.: Autophagy, micro-autophagy and crinophagy as mechanisms for protein degradation, in Liposomes: Their Role in Protein Breakdown, edited by Glaumann, H. and Ballard, F. J., New York, Academic Press, 1987, pp. 319–366. Zhang, P., Toyoshima, C., Yonekura, K., Green, N. M., and Stokes, D. L.: Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature, 392: 835–839, 1998. Auer, M., Scarborough, G. A., and Kuhlbrandt, W.: Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature, 392: 840–843, 1998. MacLennan, D. H., Rice, W. J., and Green, N. M.: The mechanism of Ca2+ transport by sarco(Endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem., 272:28815–28818, 1997. Miller, R. J.: The control of neuronal Ca2+ homeostasis. Prog. Neurobiol., 37: 255–285, 1991. Berridge, M. J. and Irvine, R. F.: Inositol phosphates and cell signalling. Nature, 341:197–205, 1989. Meszaros, L.G., Minarovic, I., and Zahradnikova, A.: Inhibition of the skeletal muscle ryanodine receptor calcium channel by nitric oxide. FEBS Lett., 380: 49–52, 1996. Xu, L., Eu, J. P., Meissner, G., and Stamler, J. S.: Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279: 234–237, 1998. Kimura, Y., Kurzydlowski, K., Tada, M., and MacLennan, D. H.: Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J. Biol. Chem., 271: 21726–21731, 1996. Hughes, G., Starling, A. P., Sharma, R. P. East, J. M., and Lee, A. G.: An investigation of the mechanism of inhibition of the Ca2+-ATPAse by phospholamban. Biochem. J., 318: 973–979, 1996. Levine, B. A., Patchell, V. B., Sharma, P., Gao, Y., Bigelow, D. J., Yao, Q., Goh, S., Colyer, J., Drago, G. A., and Perry, S. V.: Sites on the cytoplasmic region of phospolamban involved in interaction with calcium-activated ATPase of the sarcoplasmic reticulum. Eur. J. Biochem., 264: 905–913, 1999. Wang, L. H., Tu, Y. P., Yang, X. Y., Tsui, Z. C., Yang, F. Y.: Effect of ganglioside GM3 on the activity and conformation of reconstituted Ca2+-ATPase. FEBS Lett., 388: 128–130, 1996. Wang, Y., Tsui, Z., Yang, F.: Antagonistic effect of ganglioside GM1 and GM3 on the activity and conformation of sarcoplasmic reticulum CA2+-ATPase. FEBS Lett., 457: 144–148, 1999. Antipenko, A. Y., Spielman, A. I., and Kirchaberager, M.A.: Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase. J. Pharmacol. Exper. Therap., 290: 227–234, 1999. Liguri, G., Cecchi, C., Latorraca, L., Pieri, A., Sorbi, S., Innocenti, D. D., and Ramponi, G.: Alteration of acylphosphatase levels in familia Alzheimer’s disease fibroblasts with presenilin gene mutations. Neurosci. Lett.,210: 153–156, 1996. Guo, Q., Christakos, S., Robinson, N., and Mattson, M. P.: Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl. Acad. Sci. USA, 95: 3227–3232, 1998. Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P.: Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid β-peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem., 72: 1019–1029, 1999. Richter, C., Gogvadze, V. Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P., and Yaffee, M.: Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta, 1271: 67–74, 1995. Oliver, C. and Holland, A. J.: Down’s syndrome and Alzheimer’s disease: a review. Psychological Med., 16: 307–322, 1986. Rumble, B., Retallack, R., Hilbich, C., et. al.: Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N. Engl. J. Med., 320: 1446–1452, 1988. Mann, D. M. A. and Esiri, M. M.: The pattern of acquisition of plaques and tangles in the brains of patients under 50 years with Down’s syndrome. J. Neurol. Sci., 89: 169–179, 1989. Wisniewski, K. E., Hill, A. L., and Wisniewski, H. M.: Aging and Alzheimer’s disease in people with Down’s syndrome, in Advances in Medical Care, edited by Lott, I. T. and McCoy, E. E., Wiley-Liss, New York, 1992, pp. 167–183. Sinet, P.-M., Lejeune, J., and Jerome, H.: Trisomy 21 (Down’s syndrome): glutathione peroxidase, hexose monophosphate shunt and I. Q. Life Sci., 24: 29–34, 1979. Busciglio, J. and Yankner, B. A.: Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature, 378: 776–779, 1995. Graves, A. B., White, E., Koepsell, T. D., et. al.: The association between head trauma and Alzheimer’s disease. Am. J. Epidemiol., 131: 491–501, 1990. Roberts, G. W., Allsop, D., and Bruton, C.: The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiat., 53: 373–378, 1990. Guterman, A. and Smith, R. W,: Neurological sequelae of boxing. Sports Med., 4: 194–210, 1987. Roberts, G. W., Gentlemen, S. M., Lynch, A., and Graham, D. I.: βA4 Amyloid protein deposition in brain after head trauma. Lancet, 338: 1422–1423, 1991. Adams, C. W. M., and Bruton, C. J.: The cerebral vasculature in dementia pugilistica. J. Neurol. Neurosurg. Psychiat., 52: 600–6004, 1989. Behl, C., Davis, J. B., Lesley, R.,and Schubert, D.: Hydrogen peroxide mediates amyloid β protein toxicity. Cell, 77: 817–827, 1994. Parker, Jr., W. D., Boysen, S. J., and Parks, J. K.: Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol., 26: 719–723, 1989. Haas, R. H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R., and Scults, C. W.: Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol., 37: 714–722, 1995. Schapira, A.H.V., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P., and Marsden, C.D.: Mitochondrial Complex I deficiency in Parkinson’s disease. J. Neurochem., 54: 823–827, 1990. Bindoff, L. A., Birch-Machin, M. A., Cartlidge, N. E. F., Parker, Jr., W. D., and Turnbull, D. M.: Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J. Neurol. Sci., 104: 203–208, 1991. Ahlqvist, G., Landin, S., and Wroblewski, R.: Ultrastruture of skeletal muscle in patients with Parkinson’s disease and upper motor lesions. Lab.lnvest., 32: 673–679, 1975. Agid, Y.: Parkinson’s disease: pathophysiology. Lancet, 337: 1321–1327, 1991. Braak, H., and Braak, E.: Cognitive impairement in Parkinson’s disease: amyloid plaques, neurofibrillary tangles, and neuropil threads in the cerebral cortex. J. Neural Transm. (P-D Sect), 2: 45–57, 1990. Lennox, G., Lowe, J. S., Godwin-Austen, R. B., Landon, M.,and Mayer, R. J.: Diffuse Lewy body disease: an important differential diagnosis in dementia with extrapyramidal features. Prog. Clin. Biol. Res., 317: 121–130, 1989. Emilien, G., Beyreuther, K, Masters, C. L., and Maloteaux, J-M.: Prospects for pharmacological intervention in Alzheimer disease. Arch. Neurol., 57: 454–459, 2000. Harman, D.: Free radical theory of aging: increasing the average life expectancy at birth and the maximum life span. J. Anti-Aging Med., 2: 199–208, 1999. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C. W., Pfeiffer, E., Schneider, L. S., and Thal, L. J.: A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. New Engl. J. Med., 336: 1216–1222, 1997. Agus, D., Gambhir, S. S., Pardridge, W. M., Spielholz, C., Baseiga, J., Vera, J. C., and Goldse, D. W.: Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J. Clin Invest. 100: 2842–2848, 1997. Sagara, Y., Hendler, S., Khoh-Reiter, S., Gillenwater, G. Carlo, D., Schubert, D., and Chang, J.: Propofol hemisuccinate protects neuronal cells from oxidative injury. J. Neurochem., 73: 2524–2530, 1999. Palmiter, R. D.: The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA, 95: 8428–8450, 1998. Erickson, J. C., Sewell, A. K., Jensen, L. T., Winge, D. R., and Palmiter, R. D.: Enhanced neurothrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res., 649: 297–304, 1994. Arts, W. F. M., Scholte, H. R., Bogaard, J. M., Kerrebijn, K. F., Luyt-Houwen, I. E. M.: NADH-CoQ reductase deficient myopathy: successful treatment with riboflavin. Lancet, 2: 581–582, 1983. Eleff, S., Kennaway, N. G., Buist, N. R. M, Darley-Usmar, V. M., Capaldi, R. A., Bank, W. J., and Chance, B.: 31P NMR study of improvement in oxidative phosphorylation by vitamin K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc. Natl. Acad. Sci., USA, 81: 3529–3533, 1984. Ogasahara, S., Nishikawa, Y., and Yorifuji, S., Soga, F., Nakamura, Y., Takahashi, T., Hashimoto, S., Kono, N., and Tarui, S.: Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurol., 36: 45–53, 1986. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Wilson, P., and Kogan, F.: Clinical trial of indomethacin in Alzheimer’s disease. Neurol., 43: 1609–1611, 1993. Breitner, J. C. S., Gau, B. A., Welsh, K.A., Plassman, B. L., McDonald, W. M., Helms, M. J., and Anthony, J. C.: Inverse association of anti-inflammatory treatments and Alzheimer’s disease: Initial results of a co-twin control study. Neurol., 44: 227–232, 1994. Rogers, J., Webster, S., Lue, L.-F., Brachova, L., Civin, W. H., Emmerling M., Shivers, B., Walker, D., and McGeer, P.: Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging, 17: 681–686, 1996. Tang, M.-X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R.: Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet, 348: 429–432, 1996. Schenk, D., Barbour, R., Dinn, W., Gordon, G., Grajeda, H., Guido, T., et. al.: Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400: 173–177, 1999. Wolfe, M. S., Citron, M., Diehl, T. S., Xia, W., Donkor, I.O., and Selkoe, D. S.: A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J. Med. Chem., 41: 6–9, 1998. Soto, C., Kindy, M. S., Baumann, M., and Frangione, B.: Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem. Biophys. Res. Commun., 226: 672–680, 1996.