Aluminum oxyhydroxide-doped PMMA hybrids powder prepared via facile one-pot method towards copper ion removal from aqueous solution
Tóm tắt
A novel polymethyl methacrylate/boehmite nanocomposite with remarkably enhanced adsorption performance of Cu(II) was synthesized from $${\text{Al}}({\text{NO}}_{3} )_{3} \cdot 9{\text{H}}_{2} {\text{O}}$$ using a facile sol–gel method. The effects of boehmite content, contact time and morphology of hybrid (pH of synthesis) as the main parameters on removal efficiency and removal capability of hybrid on copper ions have been explored. Composites contained between 0.7 and 5wt% boehmite content and those with dissimilar morphology prepared with different pH values showed different adsorption behavior. Batch adsorption experiments show that the adsorption performance of the hybrids was enhanced with increased boehmite and contact time. The highest removal efficiency and adsorption capability were achieved when the hybrid was prepared at pH 8 with associated increased catalytic activity.
Tài liệu tham khảo
Wang, Q., Yang, Z.: Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 218, 358–365 (2016). https://doi.org/10.1016/j.envpol.2016.07.011
Asgari Lajayer, B., Najafi, N., Moghiseh, E., Mosaferi, M., Hadian, J.: Removal of heavy metals (Cu2+ and Cd2+) from effluent using gamma irradiation, titanium dioxide nanoparticles and methanol. J. Nanostructure Chem. 8, 483–496 (2018). https://doi.org/10.1007/s40097-018-0292-3
Asgari Lajayer, B., Ghorbanpour, M., Nikabadi, S.: Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 145, 377–390 (2017). https://doi.org/10.1016/j.ecoenv.2017.07.035
Sadegh, H., Ali, G.A.M., Gupta, V.K., Makhlouf, A.S.H., Shahryari-ghoshekandi, R., Nadagouda, M.N., Sillanpää, M., Megiel, E.: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem. 7, 1–14 (2017). https://doi.org/10.1007/s40097-017-0219-4
Ali Sarhan, A.: Adsorption characteristics of copper(II) ions from aqueous solution onto ionic cross-linked Pva/P(Aam-Nipaam) core-shell nanogels. J. Nanomed. Nanotechnol. 01, 1–9 (2015). https://doi.org/10.4172/2157-7439.S7-001
Tisato, F., Marzano, C., Porchia, M., Pellei, M., Santini, C.: Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev. (2009). https://doi.org/10.1002/med.20174
Muhammad Ekramul Mahmud, H.N., Huq, A.K.O., Yahya, R. binti: The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 6, 14778–14791 (2016). https://doi.org/10.1039/c5ra24358k
Ali, R.M., Hamad, H.A., Hussein, M.M., Malash, G.F.: Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 91, 317–332 (2016). https://doi.org/10.1016/j.ecoleng.2016.03.015
Khoshsang, H., Ghaffarinejad, A., Kazemi, H., Wang, Y., Arandiyan, H.: One-pot synthesis of S-doped Fe2O3/C magnetic nanocomposite as an adsorbent for anionic dye removal: equilibrium and kinetic studies. J. Nanostructure Chem. 8, 23–32 (2018). https://doi.org/10.1007/s40097-017-0251-4
Khandel, P., Shahi, S.K.: Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J. Nanostructure Chem. 8, 369–391 (2018). https://doi.org/10.1007/s40097-018-0285-2
Ghaemi, N., Daraei, P.: Enhancement in copper ion removal by PPy@Al2O3 polymeric nanocomposite membrane. J. Ind. Eng. Chem. 40, 26–33 (2016). https://doi.org/10.1016/j.jiec.2016.05.027
Fouladgar, M., Beheshti, M., Sabzyan, H.: Single and binary adsorption of nickel and copper from aqueous solutions by γ-alumina nanoparticles: equilibrium and kinetic modeling. J. Mol. Liq. 211, 1060–1073 (2015). https://doi.org/10.1016/j.molliq.2015.08.029
Xu, Z., Yu, J., Jaroniec, M.: Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl. Catal. B Environ. 163, 306–312 (2015). https://doi.org/10.1016/j.apcatb.2014.08.017
Sun, B., Li, X., Zhao, R., Yin, M., Wang, Z., Jiang, Z., Wang, C.: Hierarchical aminated PAN/γ-AlOOH electrospun composite nanofibers and their heavy metal ion adsorption performance. J. Taiwan Inst. Chem. Eng. 62, 219–227 (2016). https://doi.org/10.1016/j.jtice.2016.02.008
Dinari, M., Mohammadnezhad, G., Soltani, R.: Fabrication of poly(methyl methacrylate)/silica KIT-6 nanocomposites via in situ polymerization approach and their application for removal of Cu2+ from aqueous solution. RSC Adv. 6, 11419–11429 (2016). https://doi.org/10.1039/C5RA23500F
Ghamari, M., Farzi, G.: Effect of morphology control on optical properties of PMMA/boehmite nano-hybrid prepared through facile one-pot process. J. Mater. Sci. Mater. Electron. 28, 16570–16574 (2017). https://doi.org/10.1007/s10854-017-7570-6
Mohammadnezhad, G., Dinari, M., Soltani, R.: The preparation of modified boehmite/PMMA nanocomposites by: in situ polymerization and the assessment of their capability for Cu2+ ion removal. New J. Chem. 40, 3612–3621 (2016). https://doi.org/10.1039/c5nj03109e
Sun, W., Li, L., Stefanescu, E.A., Kessler, M.R., Bowler, N.: Dynamics of poly(methyl methacrylate)–montmorillonite nanocomposites: a dielectric study. J. Non Cryst. Solids. 410, 43–50 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.11.030
Trung, N.B., Tam, T.Van, Dang, D.K., Babu, K.F., Kim, E.J., Kim, J., Choi, W.M.: Facile synthesis of three-dimensional graphene/nickel oxide nanoparticles composites for high performance supercapacitor electrodes. Chem. Eng. J. 264, 603–609 (2015). https://doi.org/10.1016/j.cej.2014.11.140
Ghamari, M., Farzi, G.: The impact of morphology control on the microhardness of PMMA/boehmite hybrid nanoparticles prepared via facile aqueous one-pot process. J. Sol Gel Sci. Technol. 84, 135–144 (2017). https://doi.org/10.1007/s10971-017-4487-8
Ghamari, M., Farzi, G.: Frequency and composition dependency of optical and dielectric properties of PMMA/boehmite nano-hybrid prepared via facile aqueous one-pot process. Mod. Phys. Lett. B 31, 1750120 (2017). https://doi.org/10.1142/S0217984917501202
Park, S.Y., Park, E.J., Lee, M.Y., Park, C., Kim, H.G., Jeong, E.D., Lim, K.T.: Preparation of Al(OH)3/PMMA nanocomposites by emulsion polymerization. Polym. Adv. Technol. 19, 1803–1808 (2008). https://doi.org/10.1002/pat.1197
Imani, A., Arabi, M., Farzi, G.: Effect of in situ oxidative preparation on electrical properties of epoxy/PANi/MWCNTs nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 10364–10370 (2016). https://doi.org/10.1007/s10854-016-5122-0
Grohens, Y., Schultz, J., Prud’homme, R.E.: PMMA conformational changes on γ-alumina powder: influence of the polymer tacticity on the configuration of the adsorbed layer. Int. J. Adhes. Adhes. 17, 163–167 (1997). https://doi.org/10.1016/s0143-7496(96)00035-8
Pantoja, M., Díaz-Benito, B., Velasco, F., Abenojar, J., del Real, J.C.: Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy. Appl. Surf. Sci. 255, 6386–6390 (2009). https://doi.org/10.1016/j.apsusc.2009.02.022
Naskar, M.K., Chatterjee, M.: Boehmite nanoparticles by the two-reverse emulsion technique. J. Am. Ceram. Soc. 88, 3322–3326 (2005). https://doi.org/10.1111/j.1551-2916.2005.00600.x
Laachachi, A., Ferriol, M., Cochez, M., Lopez Cuesta, J.-M., Ruch, D.: A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym. Degrad. Stab. 94, 1373–1378 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.05.014
Miao, Y.E., Wang, R., Chen, D., Liu, Z., Liu, T.: Electrospun self-standing membrane of hierarchical SiO2 at γ-AlOOH (Boehmite) core/sheath fibers for water remediation. ACS Appl. Mater. Interfaces 4, 5353–5359 (2012). https://doi.org/10.1021/am3012998
Rajamani, M., Rajendrakumar, K.: Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal. J. Environ. Manag. 244, 257–264 (2019). https://doi.org/10.1016/j.jenvman.2019.05.056
Imani, A., Oveisi, H.: Self-assembly assisted fabrication of nanoporous nickel(II) phosphate octahydrate microspheres catalyst with orange peel surface toward urea oxidation. ChemistrySelect 4, 7338–7342 (2019). https://doi.org/10.1002/slct.201901107