Aluminum-containing mesostructural materials

Springer Science and Business Media LLC - Tập 3 - Trang 83-92 - 1996
Andreas Stein1, Brian Holland1
1Department of Chemistry, University of Minnesota, Minneapolis, USA

Tóm tắt

This article reviews syntheses of mesoporous aluminosilicates and aluminum oxides based on surfactant templating methods. The incorporation of aluminum in the silicate frameworks generates acid sites and ion-exchange sites. Both, tetrahedral framework aluminum and octahedral extraframework aluminum can be present, depending on the aluminum precursor used. The aluminum-containing structures tend to be less ordered than their purely siliccous analogs. Dealumination plays a significant role during template removal. Other methods for the synthesis of mesoporous aluminum-containing sieves are based on the structural transformation of kanemite, and on cluster precursors which may be connected by self-condensation or by condensation with silicate bridges. Purely aluminous mesostructures can be prepared with neutral templates or by condensing Keggin-like aluminum clusters in an ordered salt with an anionic surfactant.

Tài liệu tham khảo

J.S. Beck et al., J. Am. Chem. Soc.114, 10834–10843 (1992). J.H. Clark, Catalysis of Organic Reactions by Supported Inorganic Reagents (VCH, Weinheim, 1994). C.-G. Wu and T. Bein, Science264, 1757 (1994). Ö. Dag, A. Kuperman, and G.A. Ozin, Adv. Mater.7, 72 (1995). Z. Luan, C.-F. Cheng, W. Zhou, and J. Klinowski, J. Phys. Chem.99, 1018–1024 (1995). A. Corma, Chem. Rev.95, 559–614 (1995). M. Janicke, D. Kumar, G.D. Stucky, and B.F. Chmelka, inZeolites and Related Microporous Materials: State of the Art 1994, edited by J. Weitkamp, H.G. Karge, H. Pfeifer, and W. Hölderich (Elsevier Science B.V, 1994), pp. 243–250. R. Schmidt, D. Akporiaye, M. Stöcker, and O.H. Ellestad, inZeolites and Related Microporous Materials: State of the Art 1994, edited by J. Weitkamp, H.G. Karge, H. Pfeifer, and W. Hölderich (Elsevier Science B.V, 1994), pp. 61–68. C.F. Baes, Jr. and R.E. Mesmer, The Hydrolysis of Cations (John Wiley and Sons, New York, 1976). R. Szostak, Molecular Sieves (Van Nostrand Reinhold, New York, 1989). A. Corma, V. Fornes, M.T. Navarro, and J. Pérez-Pariente. J. Catal.148, 569–574 (1994). Z. Luan, C.-F. Cheng, H. He, and J. Klinowski, J. Phys. Chem.99, 10590–10593 (1995). K.R. Kloetstra, H.W. Zandbergen, and H.V. Bekkum, Catal. Lett.33, 157–163 (1995). R.B. Borade and A. Clearfield. Catal. Lett.31, 267–272 (1995). R. Schmidt, D. Akporiaye, M. Stöcker, and O.H. Ellestad, J. Chem. Soc., Chem. Commun., 1493–1494 (1994). Z.H. Luan, H.Y. He, W.Z. Zhou, C.F. Cheng, and J. Klinowski, J. Chem. Soc.-Faraday Trans.91, 2955–2959 (1995). D.W. Breck, Zeolite Molecular Sieves (John Wiley & Sons, New York, 1974). R.M. Barrer, Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982). J. March, Advanced Organic Chemistry (McGraw-Hill, New York, 1977). J.A. Rabo and G.J. Gajda, Catal. Rev.-Sci. Eng. 31, 385–430 (1990). T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, Bull. Chem. Soc. Jpn.63, 988–992 (1990). S. Inagaki, Y Fukushima, and K. Kuroda, J. Chem. Soc., Chem. Commun., 680–682 (1993). S. Inagaki et al., in 9th International Zeolite Conference, edited by R. vois Ballmoos (Butterworth-Heinemann, Montreal, 1992), pp. 305–311. J.C. Vartuli et al., Chem. Mater.6, 2070–2077 (1994). G. Fu, C.A. Fyfe, W. Schwieger, and G.T. Kokotailo, Angew. Chem. Int. Ed. Engl.34, 1499–1502 (1995). A. Stein et al., in Advances in Porous Materials, edited by S. Komarneni, D.M. Smith, and J.S. Beck (Materials Research Society, Pittsburgh, 1995), pp. 69–79. A. Stein et al., Chem. Mater.7, 304–313 (1995). D. Hoebbel et al., Z. Anorg. Allg. Chem.484, 7–21 (1982). F.J. Feher, T.A. Budzichowski, and K.J. Weller, J. Am. Chem. Soc.111, 7288–7289 (1989). B. Holland and A. Stein., unpublished results (1995). S.M. Bradley, R.A. Kydd, and C.A. Fyfe, Inorg. Chem.31, 1181–1185 (1992). A.C. Kunwar, A.R. Thompson, H.S. Gutowsky, and E. Oldfield, J. Magn. Res.60, 467–472 (1984). F.v. Lampe, D. Müller, W. Gessner, A.-R. Grimmer, and G. Scherer, Z. Anorg. Allg. Chem.489, 16–22 (1982). J.W. Akitt, N.N. Greenwood, B.L. Khandelwal, and G.D. Lester, J. Chem. Soc. Dalton, 604–610 (1972). A.J. Vega and G.W. Scherer, J. Non-Cryst. Solids111, 153 (1989). C. Misra,Industrial Alumina Chemicals (American Chemical Society, Washington, DC, 1986). W.H. Gitzen,Alumina as a Ceramic Material (American Ceramic Society, Columbus, Ohio, 1970). J. Cutbush, Phil. Exp. Chem. Isaac Price PhiladelphiaI (1813). W.H. Bauer, J. Fisher, RA. Scott, and S.E. Wiberley, J. Phys. Chem.59, 30–32 (1955). R.C. Mehrotra, Nature172, 74 (1953). S.A. Bagshaw, E. Prouzet, and T.J. Pinnavaia, Science269, 1242–1244 (1995). P.T. Tanev and T.J. Pinnavaia, Science267, 865–867 (1995). S. Friberg, Svensk Kemisk Tidskift78, 568–582 (1966). N. Pilpel, Chem. Rev.63, 221–234 (1963). G. Furrer, C. Ludwig, and P.W. Schindler, Journal of Colloid and Interface Science149, 56–67 (1992). Q. Huo et al., Nature368, 317–321 (1994). Q. Huo et al., Chem. Mater.6, 1176–1191 (1994). G.A. Ozin, A. Kuperman, and A. Stein, Angew. Chem. Int. Ed. Engl.28, 359 (1989). G.A. Ozin, Adv. Mater.4, 612 (1992). F. Vaudry, S. Khodabandeh, and M.E. Davis, Chem. Mater.8, 1451–1464 (1996).