Altitudinal variation of trace elements deposition in forest ecosystems along the NW side of Mt. Amiata (central Italy): Evidence from topsoil, mosses and epiphytic lichens
Tài liệu tham khảo
Aboal, 2010, Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses?, Sci. Total Environ., 408, 6291, 10.1016/j.scitotenv.2010.09.013
Bargagli, 1989, Determination of metal deposition patterns by epiphytic lichens, Toxicol. Environ. Chem., 18, 249, 10.1080/02772248909357318
Bargagli, 1998
Bargagli, 1991, Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy, Environ. Monit. Assess., 16, 265, 10.1007/BF00397614
Bargagli, 1995, Metal biomonitoring with mosses: procedures for correcting for soil contamination, Environ. Pollut., 89, 169, 10.1016/0269-7491(94)00055-I
Bargagli, 1997, Lichen biomonitoring of trace element deposition in urban, industrial and reference areas of Italy, J. Trace Elem. Med. Biol., 11, 173, 10.1016/S0946-672X(97)80049-1
Bargagli, 2002, Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy, Environ. Pollut., 116, 279, 10.1016/S0269-7491(01)00125-7
Berauer, 2019, Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes, Arctic Antarct. Alpine Res., 51, 215, 10.1080/15230430.2019.1618116
Bing, 2018, Barrier effects of remote high mountain on atmospheric metal transport in the Eastern Tibetan Plateau, Sci. Total Environ., 628–629, 687, 10.1016/j.scitotenv.2018.02.035
Bing, 2019, Biomonitoring trace element contamination impacted by atmospheric deposition in China's remote mountains, Atmos. Environ., 224, 30
Bradl, 2004, Adsorption of heavy metal ions on soils and soils constituents, J. Colloid Interface Sci., 277, 1, 10.1016/j.jcis.2004.04.005
Brown, 1984, Uptake and effects of cations on lichen metabolism, Lichenol., 16, 173, 10.1017/S0024282984000323
Caparrini, 2011, 78
Christensen, 2018, Anthropogenic and geogenic mass input of trace elements to moss and natural surface soil in Norway, Sci. Total Environ., 613–614, 371, 10.1016/j.scitotenv.2017.09.094
Daly, 2005, Organic contaminants in mountains, Environ. Sci. Technol., 39, 385, 10.1021/es048859u
Eastman, 2003
Eur-Lex, 2021, Commission Implementing Decision (EU) 2021/159 of 21 January 2021 adopting the 14th update of the list of sites of Community importance for the Mediterranean biogeographical region (notified under document C(2021) 19), Official Journal of the EU L051
Evans, 1996, Mercury accumulation in transplanted moss and lichens at high elevation sites in Quebec, Water Air Soil Pollut., 90, 475, 10.1007/BF00282663
Fernández, 2015, A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation, Sci. Total Environ., 517, 132, 10.1016/j.scitotenv.2015.02.050
Fort, 2015, Impact of climate change on mountain environment dynamics. An introduction, J. Alp. Res., 103, 1
Fowler, 2013, The global nitrogen cycle in the twenty-first century: Introduction, Philos. Trans. R. Soc. Lond. B Biol. Sci., 368, 20130165, 10.1098/rstb.2013.0165
Gandois, 2010, Canopy influence on trace metal atmospheric inputs on forest ecosystems: speciation in throughfall, Atmos. Environ., 44, 824, 10.1016/j.atmosenv.2009.11.028
Gandois, 2014, Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment, Atmos. Environ., 95, 96, 10.1016/j.atmosenv.2014.06.029
Gerdol, 2006, Effects of altitude on element accumulation in alpine moss, Chemosphere, 64, 810, 10.1016/j.chemosphere.2005.10.053
Giráldez, 2021, Testing different methods of estimating edaphic inputs in moss biomonitoring, Sci. Total Environ., 2021, 146332, 10.1016/j.scitotenv.2021.146332
Gobiet, 2014, 21st century climate change in the European Alps - a review, Sci. Total Environ., 493, 1138, 10.1016/j.scitotenv.2013.07.050
Harmens, 2015, Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010, Environ. Pollut., 200, 93, 10.1016/j.envpol.2015.01.036
van Houtven, 2018, Nitrogen deposition and climate change effects on tree species composition and ecosystems services for a forest cohort, Ecol. Monogr., 89, 1
Johansen, 2019, Precipitation chemistry and deposition at a high-elevation site in the Pacific Northwest United States (1989-2015), Atmos. Environ., 212, 221, 10.1016/j.atmosenv.2019.05.021
Kabata-Pendias, 2010
Kempter, 2017, Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data, Ecol. Indicat., 78, 19, 10.1016/j.ecolind.2017.02.029
Klos, 2012, Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic), Environ. Monit. Assess., 184, 6765, 10.1007/s10661-011-2456-1
Král, 1989, Background concentrations of lead and cadmium in the lichen Hypogymnia physodes at different altitudes, Sci. Total Environ., 84, 201, 10.1016/0048-9697(89)90383-5
Laurenzi, 2015, New 40Ar-39Ar dating and revision of the geochronology of the Monte Amiata volcano, Central Italy. It. J. Geosci., 134, 255
Lawson, 2003, Cloud water and throughfall deposition of mercury and trace elements in a high elevation spruce-fir forest at Mt. Mansfield, Vermont, J. Environ. Monit., 5, 578, 10.1039/B210125D
Lazo, 2018, Origin and spatial distribution of metals in moss samples in Albania: a hotspot of heavy metal contamination in Europe, Chemosphere, 190, 337, 10.1016/j.chemosphere.2017.09.132
Lee, 2005, Biomonitoring of trace metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling Mountains and the Pearl River delta, southern China, Atmos. Environ., 39, 397, 10.1016/j.atmosenv.2004.09.067
Lequy, 2017, Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters, Sci. Total Environ., 590–591, 602, 10.1016/j.scitotenv.2017.02.240
Levia, 2000, Physical properties of water in relation to stemflow leachate dynamics: implications for nutrient cylcing, Can. J. For. Res., 30, 662, 10.1139/x99-244
Li, 2018, Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China, Environ. Geochem. Health, 40, 505, 10.1007/s10653-017-9937-2
McLagan, 2019, Characterization and quantification of atmospheric mercury sources using passive air samplers, JGR: Atmosphere, 124, 2351
Magi, 2019, Groundwater response to local climate variability: hydrogeological and isotopic evidences from the Mt. Amiata volcanic aquifer (Tuscany, central Italy), Rendiconti Lincei. Sci. Fis. Nat., 30, 125, 10.1007/s12210-019-00779-8
Magnani, 2018, Soil properties and trace element distribution along an altitudinal gradient on the southern slope of Mt. Everest, Nepal, Catena, 162, 61, 10.1016/j.catena.2017.11.015
Monaci, 2012, Baseline element composition of foliose and fruticose lichens along the steep climatic gradient of SW Patagonia (Aisén Region, Chile), J. Environ. Monit., 14, 2309, 10.1039/c2em30246b
Oishi, 2019, Moss as an indicator of transboundary atmospheric nitrogen pollution in an alpine ecosystem, Atmos. Environ., 208, 158, 10.1016/j.atmosenv.2019.04.005
Richardson, 2015, Mercury in coniferous and deciduous upland forests in Northern New England, USA: implications from climate change, Biogeosci. Discuss., 12, 11463
Rogora, 2016, Temporal and spatial patterns in the chemistry of wet deposition in southern Alps, Atmos. Environ., 146, 44, 10.1016/j.atmosenv.2016.06.025
Rogora, 2018, Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines, Sci. Total Environ., 624, 1429, 10.1016/j.scitotenv.2017.12.155
Schmull, 2003, Extraction methods for assessing the availability of cations for epiphytic lichens from bark, Environ. Exp. Bot., 49, 273, 10.1016/S0098-8472(02)00089-8
Selvi, 1996, Flora and phytogeography of the volcanic dome of Monte Amiata (central Italy), Webbia, 50, 265, 10.1080/00837792.1996.10670606
Selvi, 1997, Rare plants on Mount Amiata, Italy: vulnerability to extinction on an ecological ‘island’, Biol. Conserv., 81, 257, 10.1016/S0006-3207(96)00155-3
Sen, 2012, Anthropogenic disturbance of element cycle at the Earth's surface, Environ. Sci. Technol., 46, 8601, 10.1021/es301261x
Soltés, 1998, Correlation between altitude and heavy metal deposition in Tatra Mts. (Slovakia), Biologia, Bratislava, 53, 85
Stankwitz, 2012, Threshold increases in soil lead and mercury from tropospheric deposition across an elevational gradient, Environ. Sci. Technol., 46, 8061, 10.1021/es204208w
Steinnes, 1997, Reference materials for large-scale metal deposition surveys, Accred Qual. Assur., 2, 243, 10.1007/s007690050141
Townsend, 2014, Avian, salamander and forest floor mercury concentrations increase with elevation in a terrestrial ecosystem, Environ. Toxicol. Chem., 33, 208, 10.1002/etc.2438
2019
Vaselli, 2013, Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project, Environ. Res., 125, 179, 10.1016/j.envres.2012.12.010
Wallace, 2007, Effects of nitrogen saturation on tree growth and death in a mixed-oak forest, For. Ecol. Manag., 243, 210, 10.1016/j.foreco.2007.02.015
Xiao, 2021, Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: geochemical characteristics and controlling factors, Environ. Pollut., 272, 115991, 10.1016/j.envpol.2020.115991
Yan, 2016, Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis, Environ. Monit. Assess., 188, 1, 10.1007/s10661-016-5315-2
Zechmeister, 1995, Correlation between altitude and heavy metal deposition in the Alps, Environ. Pollut., 89, 73, 10.1016/0269-7491(94)00042-C
Zhang, 2013, Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures, Sci. Rep., 3, 3322, 10.1038/srep03322