Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA
Tóm tắt
Từ khóa
Tài liệu tham khảo
Moore, L. G., Young, D., McCullough, R. E., Droma, T. & Zamudio, S. Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. Am. J. Hum. Biol. 13, 635–644 (2001)
Wu, T. et al. Hemoglobin levels in Quinghai-Tibet: different effects of gender for Tibetans vs. Han. J. Appl. Physiol. 98, 598–604 (2005)
Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010)
Bigham, A. et al. Identifying signature of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 6, e1001116 (2010)
Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010)
Beall, C. M. et al. Natural selection on EPAS1 (HIF2a) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl Acad. Sci. USA 107, 11459–11464 (2010)
Peng, Y. et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol. Biol. Evol. 28, 1075–1081 (2011)
Xu, S. et al. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol. Biol. Evol. 28, 1003–1011 (2011)
Wang, B. et al. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS ONE 6, e17002 (2011)
Moore, L. G. et al. Maternal adaptation to high-altitude pregnancy: an experiment of nature—a review. Placenta 25, S60–S71 (2004)
Vargas, E. & Spielvogel, H. Chronic mountain sickness, optimal hemoglobin, and heart disease. High Alt. Med. Biol. 7, 138–149 (2006)
Yip, R. Significance of an abnormally low or high hemoglobin concentration during pregnancy: special consideration of iron nutrition1'2'3. Am. J. Clin. Nutr. 72, 272S–279S (2000)
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)
Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008)
Rosenberg, N. A. Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann. Hum. Genet. 70, 841–847 (2006)
Soejima, M. & Koda, Y. Population differences of two coding SNPs. in pigmentation-related genes SLC24A5 and SLC45A2. Int. J. Legal Med. 121, 36–39 (2007)
Sulem, P. et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genet. 39, 1443–1452 (2007)
Pickrell, J. K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009)
Paradis, E. Pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010)
Vernot, B. & Akey, J. Resurrecting Surviving neandertal lineages from modern human genomes. Science (2014)
Plagnol, V. & Wall, J. D. Possible ancestral structure in human populations. PLoS Genet. 2, e105 (2006)
Reich, D. et al. Genetic history of an archaic hominin group from Denisova cave in Siberia. Nature 468, 1053–1060 (2010)
Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014)
Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011)
Abi-Rached, L. et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011)
Mendez, F. L., Watkins, J. C. & Hammer, M. F. A haplotype at STAT2 introgressed from Neanderthals and serves as a candidate of positive selection in Papua New Guinea. Am. J. Hum. Genet. 91, 265–274 (2012)
Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature (2014)
Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008)
Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132 (2009)
Browning, B. L. & Browning, S. R. A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 88, 173–182 (2011)
Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105, 767–779 (1983)
R Development Core Team R: A language and environment for statistical computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2011)
Ewing, G. & Hermisson, J. MSMS: a coalescent simulation program including recombination, demographic structure, and selection at a single locus. Bioinformatics 26, 2064–2065 (2010)
Myers, S. et al. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005)
Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet. 13, 745–753 (2012)
Teshima, K. M. & Innan, H. mbs: modifying Hudson’s ms software to generate samples of DNA sequences with a biallelic site under selection. BMC Bioinformatics 10, 166 (2009)
Hudson, R. R. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)
Sankararaman, S. et al. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012)
Durand, E. Y. et al. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011)