Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis

Nature - Tập 480 Số 7375 - Trang 104-108 - 2011
Khoa D. Nguyen1, Yifu Qiu2, Xiaojin Cui2, Y. P. Sharon Goh2, Julia W. Mwangi2, Tovo David2, Lata Mukundan2, Frank Brombacher3, Richard M. Locksley4, Ajay Chawla5
1Immunology Program, Stanford University, Palo Alto, 94305, California, USA
2Cardiovascular Research Institute, University of California, San Francisco, 94158-9001, California, USA
3Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
4Howard Hughes Medical Institute, University of California, San Francisco, 94158-9001, California, USA
5Departments of Physiology and Medicine, University of California, San Francisco, 94158-9001, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)

Lowell, B. B. & Spiegelman, B. M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000)

Tseng, Y. H., Cypess, A. M. & Kahn, C. R. Cellular bioenergetics as a target for obesity therapy. Nature Rev. Drug Discov. 9, 465–482 (2010)

Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nature Neurosci. 11, 62–71 (2008)

Morrison, S. F., Nakamura, K. & Madden, C. J. Central control of thermogenesis in mammals. Exp. Physiol. 93, 773–797 (2008)

Nedergaard, J., Bengtsson, T. & Cannon, B. New powers of brown fat: fighting the metabolic syndrome. Cell Metab. 13, 238–240 (2011)

Ellis, J. M. et al. Adipose acyl-CoA synthetase-1 directs fatty acids toward β-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53–64 (2010)

Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997)

Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998)

Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011)

Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003)

Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275–297 (2011)

Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009)

Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623–635 (2004)

Watt, M. J. et al. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 287, E120–E127 (2004)

Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006)

Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309–319 (2006)

Flierl, M. A. et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449, 721–725 (2007)

Brown, S. W. et al. Catecholamines in a macrophage cell line. J. Neuroimmunol. 135, 47–55 (2003)

Zhou, Q. Y., Quaife, C. J. & Palmiter, R. D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374, 640–643 (1995)

Yoshida, T., Sakane, N., Wakabayashi, Y., Umekawa, T. & Kondo, M. Anti-obesity and anti-diabetic effects of CL 316,243, a highly specific β3-adrenoceptor agonist, in yellow KK mice. Life Sci. 54, 491–498 (1994)

Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010)

Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδa ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008)

Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007)