Alternative statistical analyses for micropropagation: A practical case of proliferation and rooting phases in Viburnum opulus

In Vitro Cellular & Developmental Biology - Plant - Tập 39 - Trang 429-436 - 2003
Miguel Angel Ibañez1, Carmen Martin2, César Pérez2
1Departmento de Estadística y Métodos de Gestión en Agricultura, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
2Departmento de Biología Vegetal, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain

Tóm tắt

The kinds of data obtained in micropropagation studies are very often problematic, since they do not follow continous distribution and observations through culture vessels complicate measurement. Accordingly, standard analyses are often used, leading to misinterpretation of results. In this paper, we present a study of Viburnum opulus micropropagation using planned contrasts and fitting regression models in generalized linear models as an alternative statistical analysis of micropropagation results, and compare the results with that of traditional ANOVA. The advantages and possibilities of the alternative data analyses in plant tissue culture are discussed.

Tài liệu tham khảo

Agresti, A. An introduction to categorical data analysis. New York: John Wiley & Sons; 1996. Cameron, A. C.; Trivedi, P. K. Regression analysis of count data. Cambridge: Cambridge University Press; 1998. Collet, D. Modelling binary data. London: Chapman & Hall; 1991. Compton, M. E. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult. 37:217–242; 1994. Compton, M. E.; Mize, C. W. Statistical considerations for in vitro research: 1. Brith of an idea to collecting data. In Vitro Cell. Dev. Biol. Plant 35:115–121; 1999. Cox, D. R. Analysis of binary data. London: Chapman & Hall; 1970. Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot-tip culture. Proc. Int. Plant. Prop. Soc. 30:421–427; 1981. McCullagh, P. Regression models for ordinal data. J. R. Stat. Soc. B 42:109–117; 1980. McCullagh, P.; Nelder, J. A. Generalized linear models. London: Chapman & Hall; 1989. Milliken, G. A.; Johnson, D. E. Analysis of messy data, vol. I: designed experiments. New York: Van Nostrand Reinhold; 1984. Mize, C. W.; Koehler, K. J.; Compton, M. E. Statistical considerations for in vitro research: II Data to presentation. In Vitro Cell. Dev. Biol. Plant 35:122–126; 1999. SAS Institute, Inc. SAS/STAT. User's guide, version 6. Cary, NC: SAS Institute, Inc.; 1990. Scowcroft, W. R. Genetic variability in tissue culture: impact on germplasm conservation and utilization. Rome: IBGR Report; 1984. Searle, S. R. Linear models for balanced data. New York: John Wiley & Sons; 1987.