Alternative representations of P systems solutions to the graph colouring problem

James E. Cooper1, Radu Nicolescu1
1School of Computer Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beigel, R., & Eppstein, D. (2005). 3-Coloring in $$O(1.3289^n)$$ time. Journal of Algorithms, 54(2), 168–204. https://doi.org/10.1016/j.jalgor.2004.06.008 .

Ben-Ari, M. (2008). Principles of the spin model checker. London: Springer. https://doi.org/10.1007/978-1-84628-770-1 .

Cooper, J., & Nicolescu, R. (2019). The Hamiltonian cycle and travelling salesman problems in cP systems. Fundamenta Informaticae, 164(2–3), 157–180. https://doi.org/10.3233/FI-2019-1760 .

Csuhaj-Varjú, E., & Verlan, S. (2011). On generalized communicating P systems with minimal interaction rules. Theoretical Computer Science, 412(1–2), 124–135. https://doi.org/10.1016/j.tcs.2010.08.020 .

Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2008). A uniform family of tissue P systems with cell division solving 3-COL in a linear time. Theoretical Computer Science, 404(1–2), 76–87. https://doi.org/10.1016/j.tcs.2008.04.005 .

Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M. J., urcanu, A., Valencia Cabrera, L., et al. (2013). 3-Col problem modelling using simple kernel P systems. International Journal of Computer Mathematics, 90(4), 816–830. https://doi.org/10.1080/00207160.2012.743712 .

Hoare, C. A. R. (1985). Communicating sequential processes. Prentice-Hall international series in computer science. Englewood Cliffs: Prentice/Hall International.

Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2/3), 279–308.

Lefticaru, R., Tudose, C., & Ipate, F. (2011). Towards automated verification of P systems using spin. International Journal of Natural Computing Research, 2(3), 1–12. https://doi.org/10.4018/jncr.2011070101 .

Lewis, R. (2016). A guide to graph colouring. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-25730-3 .

Nicolescu, R., & Henderson, A. (2018). An Introduction to cP systems. In C. Graciani, A. Riscos-Núñez, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Enjoying natural computing: Essays dedicated to Mario de Jesús Pérez-Jiménez on the occasion of his 70th birthday. Lecture notes in computer science (Vol. 11270, pp. 204–227). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-00265-7_17 .

Panangaden, P., & Reppy, J. (1997). The essence of concurrent ML (pp. 5–29). New York: Springer. https://doi.org/10.1007/978-1-4612-2274-3_2 .

Pérez-Hurtado, I., Orellana-Martín, D., Zhang, G., & Pérez-Jiménez, M. J. (2018). P-lingua compiler: A tool for generating ad-hoc simulators in membrane computing. In M. J. Dinneen, & R. Nicolescu (Eds.), Pre-proceedings of Asian branch of international conference on membrane computing (pp. 149–163). Auckland: Centre for Discrete Mathematics and Theoretical Computer Science. https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/publication-list-bydate.php?selected-date=2018 . Accessed 10 Jan 2019.

Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M. J., Colomer, M. A., & Riscos-Núñez, A. (2010). MeCoSim: A general purpose software tool for simulating biological phenomena by means of P systems. In K. Li, Z. Tang, R. Li, A. K. Nagar, & R. Thamburaj (Eds.), 2010 IEEE fifth international conference on bio-inspired computing: Theories and applications (BIC-TA) (pp. 637–643). Changsha: IEEE. https://doi.org/10.1109/BICTA.2010.5645199 .

Păun, G., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2008). Tissue P systems with cell division. International Journal of Computers Communications & Control, 3(3), 295. https://doi.org/10.15837/ijccc.2008.3.2397 .

Reppy, J. H. (1991). CML. ACM SIGPLAN Notices, 26(6), 293–305. https://doi.org/10.1145/113446.113470 .

Reppy, J. H. (2007). Concurrent programming in ML. New York: Cambridge University Press.

Song, B., Pérez-Jiménez, M. J., Păun, G., & Pan, L. (2016). Tissue P systems with channel states working in the flat maximally parallel way. IEEE Transactions on NanoBioscience, 15(7), 645–656. https://doi.org/10.1109/TNB.2016.2594380 .

Verlan, S. (2005). Tissue P systems with minimal symport/antiport. In C. S. Calude, E. Calude, & M. J. Dinneen (Eds.), Lecture Notes in Computer Science (Developments in language theory) (Vol. 3340, pp. 418–429). Berlin: Springer. https://doi.org/10.1007/978-3-540-30550-7_35 .