Alternative Low‐Energy Mechanisms for Isotopic Exchange in Gas‐Phase D2O–H+(H2O)n Reactions

ChemPhysChem - Tập 7 Số 4 - Trang 894-903 - 2006
Massimo Mella1, Alessandro Ponti2
1School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AB, UK, Fax: (+44) 29-208-74030
2Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milano, Italy

Tóm tắt

AbstractMolecular‐dynamics (MD) trajectories and high‐level ab initio methods have been used to study the low‐energy mechanism for D2O–H+(H2O)n reactions. At low collisional energies, MD simulations show that the collisional complexes are long‐lived and undergo fast monomolecular isomerization, converting between different isomers within 50–500 ps. Such processes, primarily involving water‐molecule shifts along a water chain, require the surmounting of very‐low‐energy barriers and present sizable non‐ Rice–Ramsperger–Kassel–Marcus (RRKM) effects, which are interpreted as a lack of randomization of the internal kinetic energy. Interestingly, the rate of water shifts was found to increase upon increasing the size of the cluster. Based on these findings, we propose to incorporate the following steps into the mechanism for low‐energy isotopic scrambling these D2O–H+(H2O)n reactions: a) formation of the collisional complex [H+(H2O)nD2O]* in a vibro‐rotational excited state; b) incorporation of the heavy‐water molecule in the cluster core as HD2O+ by means of isomerization involving molecular shifts; c) displacement of solvation molecules from the first shell of HD2O+ inducing de‐deuteration (shift of a D+ to a neighbor water molecule); d) reorganization of the clusters and/or expulsion of one of the isotopic variants of water (H2O, HDO or D2O) from the periphery of the complex.

Từ khóa


Tài liệu tham khảo

10.1152/physrev.00028.2002

10.1126/science.1067746

10.1021/cr020715f

10.1021/j100016a003

10.1063/1.469654

10.1016/0009-2614(95)00905-J

10.1038/17579

10.1088/0953-8984/12/8A/317

10.1063/1.479723

10.1021/ja002506n

10.1063/1.1319636

10.1021/j100443a001

10.1063/1.439781

10.1029/98GL00253

10.1016/0020-7381(82)80048-X

10.1016/0168-1176(91)85100-Z

10.1016/S0168-1176(97)00257-7

10.1021/jp034129h

10.1063/1.1802391

10.1063/1.1668637

10.1063/1.477173

10.1063/1.480183

10.1063/1.1618222

10.1039/b501678a

10.1103/PhysRevLett.55.2471

10.1016/0301-0104(86)87007-0

10.1016/0009-2614(78)80363-7

Gaussian 98 (Revision A.7) M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman V. G. Zakrzewski J. A. Montgomery R. E. Stratmann J. C. Burant S. Dapprich J. M. Millam A. D. Daniels K. N. Kudin M. C. Strain O. Farkas J. Tomasi V. Barone M. Cossi R. Cammi B. Mennucci C. Pomelli C. Adamo S. Clifford J. Ochterski G. A. Petersson P. Y. Ayala Q. Cui K. Morokuma D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. Cioslowski J. V. Ortiz B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. Gomperts R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara C. Gonzalez M. Challacombe P. M. W. Gill B. G. Johnson W. Chen M. W. Wong J. L. Andres M. Head‐Gordon E. S. Replogle J. A. Pople Gaussian Inc. Pittsburgh PA 1998.

10.1080/00268977000101561

10.1063/1.472902

10.1063/1.471605

10.1021/jp034682z

10.1063/1.436694

10.1021/jp011241b

10.1016/S0009-2614(00)00584-4

10.1126/science.1096466

10.1126/science.1096037

The bifurcated processes were found to be roughly 10–20 times less frequent than for instance the water shifts in Figure 3. At the same time the energy barriers for the bifurcated processes were found to be 2–4 kcal mol−1higher than for the water shifts on the OSS2 model surface.

10.1016/S0009-2614(00)00479-6

10.1063/1.480183

10.1063/1.466439

10.1063/1.1288918

Forst W., 1973, Theory of Unimolecular Reactions

The number of events recorded in the time range of 0–100 ps was found to be substantially larger than at longer times.

The lifetime of the ring isomer was found to be roughly 0.5 ps.

We verified the general correctness of this presupposition allowing water molecules to attach to a cluster with no initial kinetic energy so that it is driven only by the electrostatic interaction with the protonated species. Although one should also expect other docking positions for the incoming D2O especially for larger relative kinetic energy our choice for the initial structure in Scheme 1 represents the worst possible case for the H/D scrambling process as will be apparent in the following.

10.1039/a808871c

10.1016/S0009-2614(00)00381-X

10.1016/j.cplett.2005.06.111

10.1063/1.1635361

10.1021/ja9530376

10.1021/jp020537u

10.1002/jcc.540030212

10.1021/ja01607a027