Alternating multiple zeta values, and explicit formulas of some Euler–Apéry-type series

European Journal of Combinatorics - Tập 93 - Trang 103283 - 2021
Weiping Wang1, Ce Xu2,3
1School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
2School of Mathematics and Statistics, Anhui Normal University, Wuhu 241000, PR China
3Multiple Zeta Research Center, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0389, Japan

Tài liệu tham khảo

Ablinger, 2014, The package Harmonicsums: computer algebra and analytic aspects of nested sums Ablinger, 2017, Discovering and proving infinite binomial sums identities, Exp. Math., 26, 62, 10.1080/10586458.2015.1116028 Ablinger, 2019, Discovering and proving infinite Pochhammer sum identities, Exp. Math., 10.1080/10586458.2019.1627254 Almkvist, 1999, Borwein and Bradley’s Apéry-like formulae for ζ(4n+3), Exp. Math., 8, 197, 10.1080/10586458.1999.10504398 Alzer, 2006, Series representations for some mathematical constants, J. Math. Anal. Appl., 320, 145, 10.1016/j.jmaa.2005.06.059 Apéry, 1979, Irrationalité de ζ2 et ζ3, Luminy Conference on Arithmetic, Astérisque, 61, 11 Bailey, 2006, Experimental determination of Apéry-like identities for ζ(2n+2), Exp. Math., 15, 281, 10.1080/10586458.2006.10128968 Bailey, 2007 Bailey, 1994, Experimental evaluation of Euler sums, Exp. Math., 3, 17, 10.1080/10586458.1994.10504573 Berndt, 1985 Blümlein, 2010, The multiple zeta value data mine, Comput. Phys. Commun., 181, 582, 10.1016/j.cpc.2009.11.007 Borwein, 1995, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. (2), 38, 277, 10.1017/S0013091500019088 Borwein, 2001, Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 353, 907, 10.1090/S0002-9947-00-02616-7 Borwein, 2001, Central binomial sums, multiple Clausen values, and zeta values, Exp. Math., 10, 25, 10.1080/10586458.2001.10504426 Boyadzhiev, 2012, Series with central binomial coefficients, Catalan numbers, and harmonic numbers, J. Integer Seq., 15 Boyadzhiev, 2017, Power series with inverse binomial coefficients and harmonic numbers, Tatra Mt. Math. Publ., 70, 199 Bradley, 2005, Multiple q-zeta values, J. Algebra, 283, 752, 10.1016/j.jalgebra.2004.09.017 Campbell, 2018, Ramanujan-like series for 1∕π involving harmonic numbers, Ramanujan J., 46, 373, 10.1007/s11139-018-9995-9 Chen, 2016, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Seq., 19 Chen, 2017, Generalized harmonic numbers and Euler sums, Int. J. Number Theory, 13, 513, 10.1142/S1793042116500883 Chen, 2019, Generalized Arakawa–Kaneko zeta functions, Integral Transforms Spec. Funct., 30, 282, 10.1080/10652469.2018.1562450 Chu, 2017, Hypergeometric approach to Apéry-like series, Integral Transforms Spec. Funct., 28, 505, 10.1080/10652469.2017.1315416 Chu, 2009, Infinite series with harmonic numbers and central binomial coefficients, Int. J. Number Theory, 5, 429, 10.1142/S1793042109002171 Comtet, 1974 Coppo, 2015, Inverse binomial series and values of Arakawa–Kaneko zeta functions, J. Number Theory, 150, 98, 10.1016/j.jnt.2014.11.007 Davydychev, 2004, Massive Feynman diagrams and inverse binomial sums, Nuclear Phys. B, 699, 3, 10.1016/j.nuclphysb.2004.08.020 Flajolet, 1998, Euler sums and contour integral representations, Exp. Math., 7, 15, 10.1080/10586458.1998.10504356 Hessami Pilehrood, 2010, Series acceleration formulas for beta values, Discrete Math. Theor. Comput. Sci., 12, 223 Hoffman, 1992, Multiple harmonic series, Pacific J. Math., 152, 275, 10.2140/pjm.1992.152.275 Hoffman, 2017, Harmonic-number summation identities, symmetric functions, and multiple zeta values, Ramanujan J., 42, 501, 10.1007/s11139-015-9750-4 Hoffman, 2019, An odd variant of multiple zeta values, Commun. Number Theory Phys., 13, 529, 10.4310/CNTP.2019.v13.n3.a2 Jegerlehner, 2003, MS¯ vs. pole masses of gauge bosons II: two-loop electroweak fermion corrections, Nuclear Phys. B, 658, 49, 10.1016/S0550-3213(03)00177-9 Kalmykov, 2007, Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ε-expansion of generalized hypergeometric functions with one half-integer value of parameter, J. High Energy Phys., 2007, 10.1088/1126-6708/2007/10/048 Knuth, 2015, Problem 11832, Amer. Math. Monthly, 122, 390 Kuba, 2010, A note on Stirling series, Integers, 10, 393, 10.1515/integ.2010.034 Lehmer, 1985, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92, 449, 10.1080/00029890.1985.11971651 Leshchiner, 1981, Some new identities for ζ(k), J. Number Theory, 13, 355, 10.1016/0022-314X(81)90020-2 Luke, 1969, vol. 53 Macdonald, 2015 Orr, 2019, Generalized log-sine integrals and Bell polynomials, J. Comput. Appl. Math., 347, 330, 10.1016/j.cam.2018.08.026 Riordan, 2002 Sitaramachandra Rao, 1987, A formula of S. Ramanujan, J. Number Theory, 25, 1, 10.1016/0022-314X(87)90012-6 Sprugnoli, 2006, Sums of reciprocals of the central binomial coefficients, Integers, 6 Srivastava, 2012 Sun, 2014 Sun, 2015, A new series for π3 and related congruences, Internat. J. Math., 26, 10.1142/S0129167X1550055X Sun, 2015, New series for some special values of L-functions, Nanjing Daxue Xuebao Shuxue Bannian Kan, 32, 189 van der Poorten, 1978, A proof that Euler missed … Apéry’s proof of the irrationality of ζ(3), Math. Intell., 1, 195, 10.1007/BF03028234 Wang, 2020, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, Ramanujan J., 52, 641, 10.1007/s11139-019-00140-5 Wang, 2018, Euler sums and Stirling sums, J. Number Theory, 185, 160, 10.1016/j.jnt.2017.08.037 Wang, 2019 Weinzierl, 2004, Expansion around half-integer values, binomial sums, and inverse binomial sums, J. Math. Phys., 45, 2656, 10.1063/1.1758319 Xu, 2017, Multiple zeta values and Euler sums, J. Number Theory, 177, 443, 10.1016/j.jnt.2017.01.018 Xu, 2018, On harmonic numbers and nonlinear Euler sums, J. Math. Anal. Appl., 466, 1009, 10.1016/j.jmaa.2018.06.036 Xu, 2020, Explicit formulas of Euler sums via multiple zeta values, J. Symb. Comput., 101, 109, 10.1016/j.jsc.2019.06.009 Zagier, 1994, Values of zeta functions and their applications, vol. 120, 497 Zucker, 1985, On the series ∑k=1∞2kk−1k−n and related sums, J. Number Theory, 20, 92, 10.1016/0022-314X(85)90019-8