Altered replication stress response due to CARD14 mutations promotes recombination-induced revertant mosaicism
Tài liệu tham khảo
Khanna, 2001, DNA double-strand breaks: signaling, repair and the cancer connection, Nat. Genet., 27, 247, 10.1038/85798
Mazouzi, 2014, DNA replication stress: causes, resolution and disease, Exp. Cell Res., 329, 85, 10.1016/j.yexcr.2014.09.030
Zeman, 2014, Causes and consequences of replication stress, Nat. Cell Biol., 16, 2, 10.1038/ncb2897
Petermann, 2010, Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair, Mol. Cell, 37, 492, 10.1016/j.molcel.2010.01.021
Petermann, 2010, Pathways of mammalian replication fork restart, Nat. Rev. Mol. Cell Biol., 11, 683, 10.1038/nrm2974
Jasin, 2013, Repair of strand breaks by homologous recombination, Cold Spring Harb. Perspect. Biol., 5, a012740, 10.1101/cshperspect.a012740
Deng, 1996, Loss of heterozygosity in normal tissue adjacent to breast carcinomas, Science, 274, 2057, 10.1126/science.274.5295.2057
Kakiuchi, 2020, Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis, Nature, 577, 260, 10.1038/s41586-019-1856-1
Nanki, 2020, Somatic inflammatory gene mutations in human ulcerative colitis epithelium, Nature, 577, 254, 10.1038/s41586-019-1844-5
Jonkman, 2009, Revertant mosaicism--patchwork in the skin, N. Engl. J. Med., 360, 1680, 10.1056/NEJMc0809896
Revy, 2019, Somatic genetic rescue in Mendelian haematopoietic diseases, Nat. Rev. Genet., 20, 582, 10.1038/s41576-019-0139-x
Nomura, 2020, Recombination-induced revertant mosaicism in ichthyosis with confetti and loricrin keratoderma, J. Dermatol. Sci., 97, 94, 10.1016/j.jdermsci.2019.12.013
Choate, 2010, Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10, Science, 330, 94, 10.1126/science.1192280
Choate, 2015, Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti, J. Clin. Invest., 125, 1703, 10.1172/JCI64415
Suzuki, 2016, Revertant Mosaicism in Ichthyosis with Confetti Caused by a Frameshift Mutation in KRT1, J. Invest. Dermatol., 136, 2093, 10.1016/j.jid.2016.05.109
Nomura, 2018, Chromosomal inversions as a hidden disease-modifying factor for somatic recombination phenotypes, JCI Insight, 3, e97595, 10.1172/jci.insight.97595
Suzuki, 2019, Somatic recombination underlies frequent revertant mosaicism in loricrin keratoderma, Life Sci Alliance, 2, e201800284, 10.26508/lsa.201800284
Griffiths, 1992, Pityriasis rubra pilaris: the problem of its classification, J. Am. Acad. Dermatol., 26, 140, 10.1016/S0190-9622(08)80543-9
Roenneberg, 2018, Pityriasis rubra pilaris: algorithms for diagnosis and treatment, J. Eur. Acad. Dermatol. Venereol., 32, 889, 10.1111/jdv.14761
Fuchs-Telem, 2012, Familial pityriasis rubra pilaris is caused by mutations in CARD14, Am. J. Hum. Genet., 91, 163, 10.1016/j.ajhg.2012.05.010
Jordan, 2012, PSORS2 is due to mutations in CARD14, Am. J. Hum. Genet., 90, 784, 10.1016/j.ajhg.2012.03.012
Wullaert, 2011, NF-κB in the regulation of epithelial homeostasis and inflammation, Cell Res., 21, 146, 10.1038/cr.2010.175
Clemmensen, 2009, Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies, Exp. Dermatol., 18, 979, 10.1111/j.1600-0625.2009.00921.x
Tammaro, 2013, Replication-dependent and transcription-dependent mechanisms of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide, PLoS ONE, 8, e79202, 10.1371/journal.pone.0079202
Nieminuszczy, 2016, The DNA fibre technique - tracking helicases at work, Methods, 108, 92, 10.1016/j.ymeth.2016.04.019
Jackson, 1998, Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells, J. Cell Biol., 140, 1285, 10.1083/jcb.140.6.1285
Stults, 2014, The sister chromatid exchange (SCE) assay, Methods Mol. Biol., 1105, 439, 10.1007/978-1-62703-739-6_32
Takeichi, 2017, Pityriasis Rubra Pilaris Type V as an Autoinflammatory Disease by CARD14 Mutations, JAMA Dermatol., 153, 66, 10.1001/jamadermatol.2016.3601
Arita, 2003, Squamous cell carcinoma in a patient with non-bullous congenital ichthyosiform erythroderma, Br. J. Dermatol., 148, 367, 10.1046/j.1365-2133.2003.05097_5.x
Natsuga, 2007, Novel ABCA12 mutations identified in two cases of non-bullous congenital ichthyosiform erythroderma associated with multiple skin malignant neoplasia, J. Invest. Dermatol., 127, 2669, 10.1038/sj.jid.5700885
Symington, 2011, Double-strand break end resection and repair pathway choice, Annu. Rev. Genet., 45, 247, 10.1146/annurev-genet-110410-132435
Panier, 2014, Double-strand break repair: 53BP1 comes into focus, Nat. Rev. Mol. Cell Biol., 15, 7, 10.1038/nrm3719
Byrne, 2019, Replication protein A, the laxative that keeps DNA regular: The importance of RPA phosphorylation in maintaining genome stability, Semin. Cell Dev. Biol., 86, 112, 10.1016/j.semcdb.2018.04.005
Pierce, 1999, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev., 13, 2633, 10.1101/gad.13.20.2633
Akiyama, 2017, Autoinflammatory keratinization diseases, J. Allergy Clin. Immunol., 140, 1545, 10.1016/j.jaci.2017.05.019
Zhang, 2017, 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology, Cell, 168, 37, 10.1016/j.cell.2016.12.012
Shibata, 2014, DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities, Mol. Cell, 53, 7, 10.1016/j.molcel.2013.11.003
Forment, 2015, A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells, Nat. Protoc., 10, 1297, 10.1038/nprot.2015.066
Xu, 2017, 53BP1 and BRCA1 control pathway choice for stalled replication restart, eLife, 6, e30523, 10.7554/eLife.30523
Saldivar, 2017, The essential kinase ATR: ensuring faithful duplication of a challenging genome, Nat. Rev. Mol. Cell Biol., 18, 622, 10.1038/nrm.2017.67
Kramara, 2018, Break-Induced Replication: The Where, The Why, and The How, Trends Genet., 34, 518, 10.1016/j.tig.2018.04.002
Wilson, 2007, Molecular mechanisms of sister-chromatid exchange, Mutat. Res., 616, 11, 10.1016/j.mrfmmm.2006.11.017
Mayle, 2015, DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage, Science, 349, 742, 10.1126/science.aaa8391
Lydeard, 2007, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, 448, 820, 10.1038/nature06047
Anand, 2013, Break-induced DNA replication, Cold Spring Harb. Perspect. Biol., 5, a010397, 10.1101/cshperspect.a010397
Kramara, 2017, Break-induced replication: an unhealthy choice for stress relief?, Nat. Struct. Mol. Biol., 24, 11, 10.1038/nsmb.3361
Sakofsky, 2017, Break induced replication in eukaryotes: mechanisms, functions, and consequences, Crit. Rev. Biochem. Mol. Biol., 52, 395, 10.1080/10409238.2017.1314444
Kim, 2017, The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats, Nat. Struct. Mol. Biol., 24, 55, 10.1038/nsmb.3334
Macheret, 2018, Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress, Nature, 555, 112, 10.1038/nature25507
Kawai, 2012, Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency, Blood, 119, 5458, 10.1182/blood-2011-05-354167
Kubo, 2019, Clonal Expansion of Second-Hit Cells with Somatic Recombinations or C>T Transitions Form Porokeratosis in MVD or MVK Mutant Heterozygotes, J. Invest. Dermatol., 139, 2458, 10.1016/j.jid.2019.05.020
Akiyama, 2020, Autoinflammatory Keratinization Diseases (AiKDs): Expansion of Disorders to Be Included, Front. Immunol., 11, 280, 10.3389/fimmu.2020.00280
Volcic, 2012, NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes, Nucleic Acids Res., 40, 181, 10.1093/nar/gkr687