Altered replication stress response due to CARD14 mutations promotes recombination-induced revertant mosaicism

The American Journal of Human Genetics - Tập 108 - Trang 1026-1039 - 2021
Toshinari Miyauchi1, Shotaro Suzuki1, Masae Takeda1, Jin Teng Peh1, Masayuki Aiba1, Ken Natsuga1, Yasuyuki Fujita1, Takuya Takeichi2, Taiko Sakamoto3, Masashi Akiyama2, Hiroshi Shimizu1, Toshifumi Nomura1,4
1Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
2Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
3Sakamoto Clinic, Fujieda, Shizuoka 426-0063, Japan
4Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan

Tài liệu tham khảo

Khanna, 2001, DNA double-strand breaks: signaling, repair and the cancer connection, Nat. Genet., 27, 247, 10.1038/85798 Mazouzi, 2014, DNA replication stress: causes, resolution and disease, Exp. Cell Res., 329, 85, 10.1016/j.yexcr.2014.09.030 Zeman, 2014, Causes and consequences of replication stress, Nat. Cell Biol., 16, 2, 10.1038/ncb2897 Petermann, 2010, Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair, Mol. Cell, 37, 492, 10.1016/j.molcel.2010.01.021 Petermann, 2010, Pathways of mammalian replication fork restart, Nat. Rev. Mol. Cell Biol., 11, 683, 10.1038/nrm2974 Jasin, 2013, Repair of strand breaks by homologous recombination, Cold Spring Harb. Perspect. Biol., 5, a012740, 10.1101/cshperspect.a012740 Deng, 1996, Loss of heterozygosity in normal tissue adjacent to breast carcinomas, Science, 274, 2057, 10.1126/science.274.5295.2057 Kakiuchi, 2020, Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis, Nature, 577, 260, 10.1038/s41586-019-1856-1 Nanki, 2020, Somatic inflammatory gene mutations in human ulcerative colitis epithelium, Nature, 577, 254, 10.1038/s41586-019-1844-5 Jonkman, 2009, Revertant mosaicism--patchwork in the skin, N. Engl. J. Med., 360, 1680, 10.1056/NEJMc0809896 Revy, 2019, Somatic genetic rescue in Mendelian haematopoietic diseases, Nat. Rev. Genet., 20, 582, 10.1038/s41576-019-0139-x Nomura, 2020, Recombination-induced revertant mosaicism in ichthyosis with confetti and loricrin keratoderma, J. Dermatol. Sci., 97, 94, 10.1016/j.jdermsci.2019.12.013 Choate, 2010, Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10, Science, 330, 94, 10.1126/science.1192280 Choate, 2015, Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti, J. Clin. Invest., 125, 1703, 10.1172/JCI64415 Suzuki, 2016, Revertant Mosaicism in Ichthyosis with Confetti Caused by a Frameshift Mutation in KRT1, J. Invest. Dermatol., 136, 2093, 10.1016/j.jid.2016.05.109 Nomura, 2018, Chromosomal inversions as a hidden disease-modifying factor for somatic recombination phenotypes, JCI Insight, 3, e97595, 10.1172/jci.insight.97595 Suzuki, 2019, Somatic recombination underlies frequent revertant mosaicism in loricrin keratoderma, Life Sci Alliance, 2, e201800284, 10.26508/lsa.201800284 Griffiths, 1992, Pityriasis rubra pilaris: the problem of its classification, J. Am. Acad. Dermatol., 26, 140, 10.1016/S0190-9622(08)80543-9 Roenneberg, 2018, Pityriasis rubra pilaris: algorithms for diagnosis and treatment, J. Eur. Acad. Dermatol. Venereol., 32, 889, 10.1111/jdv.14761 Fuchs-Telem, 2012, Familial pityriasis rubra pilaris is caused by mutations in CARD14, Am. J. Hum. Genet., 91, 163, 10.1016/j.ajhg.2012.05.010 Jordan, 2012, PSORS2 is due to mutations in CARD14, Am. J. Hum. Genet., 90, 784, 10.1016/j.ajhg.2012.03.012 Wullaert, 2011, NF-κB in the regulation of epithelial homeostasis and inflammation, Cell Res., 21, 146, 10.1038/cr.2010.175 Clemmensen, 2009, Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies, Exp. Dermatol., 18, 979, 10.1111/j.1600-0625.2009.00921.x Tammaro, 2013, Replication-dependent and transcription-dependent mechanisms of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide, PLoS ONE, 8, e79202, 10.1371/journal.pone.0079202 Nieminuszczy, 2016, The DNA fibre technique - tracking helicases at work, Methods, 108, 92, 10.1016/j.ymeth.2016.04.019 Jackson, 1998, Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells, J. Cell Biol., 140, 1285, 10.1083/jcb.140.6.1285 Stults, 2014, The sister chromatid exchange (SCE) assay, Methods Mol. Biol., 1105, 439, 10.1007/978-1-62703-739-6_32 Takeichi, 2017, Pityriasis Rubra Pilaris Type V as an Autoinflammatory Disease by CARD14 Mutations, JAMA Dermatol., 153, 66, 10.1001/jamadermatol.2016.3601 Arita, 2003, Squamous cell carcinoma in a patient with non-bullous congenital ichthyosiform erythroderma, Br. J. Dermatol., 148, 367, 10.1046/j.1365-2133.2003.05097_5.x Natsuga, 2007, Novel ABCA12 mutations identified in two cases of non-bullous congenital ichthyosiform erythroderma associated with multiple skin malignant neoplasia, J. Invest. Dermatol., 127, 2669, 10.1038/sj.jid.5700885 Symington, 2011, Double-strand break end resection and repair pathway choice, Annu. Rev. Genet., 45, 247, 10.1146/annurev-genet-110410-132435 Panier, 2014, Double-strand break repair: 53BP1 comes into focus, Nat. Rev. Mol. Cell Biol., 15, 7, 10.1038/nrm3719 Byrne, 2019, Replication protein A, the laxative that keeps DNA regular: The importance of RPA phosphorylation in maintaining genome stability, Semin. Cell Dev. Biol., 86, 112, 10.1016/j.semcdb.2018.04.005 Pierce, 1999, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev., 13, 2633, 10.1101/gad.13.20.2633 Akiyama, 2017, Autoinflammatory keratinization diseases, J. Allergy Clin. Immunol., 140, 1545, 10.1016/j.jaci.2017.05.019 Zhang, 2017, 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology, Cell, 168, 37, 10.1016/j.cell.2016.12.012 Shibata, 2014, DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities, Mol. Cell, 53, 7, 10.1016/j.molcel.2013.11.003 Forment, 2015, A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells, Nat. Protoc., 10, 1297, 10.1038/nprot.2015.066 Xu, 2017, 53BP1 and BRCA1 control pathway choice for stalled replication restart, eLife, 6, e30523, 10.7554/eLife.30523 Saldivar, 2017, The essential kinase ATR: ensuring faithful duplication of a challenging genome, Nat. Rev. Mol. Cell Biol., 18, 622, 10.1038/nrm.2017.67 Kramara, 2018, Break-Induced Replication: The Where, The Why, and The How, Trends Genet., 34, 518, 10.1016/j.tig.2018.04.002 Wilson, 2007, Molecular mechanisms of sister-chromatid exchange, Mutat. Res., 616, 11, 10.1016/j.mrfmmm.2006.11.017 Mayle, 2015, DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage, Science, 349, 742, 10.1126/science.aaa8391 Lydeard, 2007, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, 448, 820, 10.1038/nature06047 Anand, 2013, Break-induced DNA replication, Cold Spring Harb. Perspect. Biol., 5, a010397, 10.1101/cshperspect.a010397 Kramara, 2017, Break-induced replication: an unhealthy choice for stress relief?, Nat. Struct. Mol. Biol., 24, 11, 10.1038/nsmb.3361 Sakofsky, 2017, Break induced replication in eukaryotes: mechanisms, functions, and consequences, Crit. Rev. Biochem. Mol. Biol., 52, 395, 10.1080/10409238.2017.1314444 Kim, 2017, The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats, Nat. Struct. Mol. Biol., 24, 55, 10.1038/nsmb.3334 Macheret, 2018, Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress, Nature, 555, 112, 10.1038/nature25507 Kawai, 2012, Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency, Blood, 119, 5458, 10.1182/blood-2011-05-354167 Kubo, 2019, Clonal Expansion of Second-Hit Cells with Somatic Recombinations or C>T Transitions Form Porokeratosis in MVD or MVK Mutant Heterozygotes, J. Invest. Dermatol., 139, 2458, 10.1016/j.jid.2019.05.020 Akiyama, 2020, Autoinflammatory Keratinization Diseases (AiKDs): Expansion of Disorders to Be Included, Front. Immunol., 11, 280, 10.3389/fimmu.2020.00280 Volcic, 2012, NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes, Nucleic Acids Res., 40, 181, 10.1093/nar/gkr687