Altered Ca2+ signaling in cancer cells: Proto-oncogenes and tumor suppressors targeting IP3 receptors
Tài liệu tham khảo
Decuypere, 2011, The IP3 receptor–mitochondria connection in apoptosis and autophagy, Biochim. Biophys. Acta, 1813, 1003, 10.1016/j.bbamcr.2010.11.023
Mekahli, 2011, Endoplasmic-reticulum calcium depletion and disease, Cold Spring Harb. Perspect. Biol., 3, 10.1101/cshperspect.a004317
Cardenas, 2012, Mitochondrial Ca2+ signals in autophagy, Cell Calcium, 52, 44, 10.1016/j.ceca.2012.03.001
Giorgi, 2012, Mitochondrial Ca2+ and apoptosis, Cell Calcium, 52, 36, 10.1016/j.ceca.2012.02.008
Vervliet, 2012, ER stress and UPR through dysregulated ER Ca2+ homeostasis and signaling, 107
Zhivotovsky, 2011, Calcium and cell death mechanisms: a perspective from the cell death community, Cell Calcium, 50, 211, 10.1016/j.ceca.2011.03.003
Hetz, 2012, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89, 10.1038/nrm3270
Giorgi, 2011, Mitochondria associated membranes (MAMs) as critical hubs for apoptosis, Commun. Integr. Biol., 4, 334, 10.4161/cib.4.3.15021
Patergnani, 2011, Calcium signaling around mitochondria associated membranes (MAMs), Cell Commun. Signal., 9, 19, 10.1186/1478-811X-9-19
Shoshan-Barmatz, 2004, Subcellular localization of VDAC in mitochondria and ER in the cerebellum, Biochim. Biophys. Acta, 1657, 105, 10.1016/j.bbabio.2004.02.009
Shoshan-Barmatz, 2005, The voltage-dependent anion channel in endoplasmic/sarcoplasmic reticulum: characterization, modulation and possible function, J. Membr. Biol., 204, 57, 10.1007/s00232-005-0749-4
Min, 2012, Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart, Biochem. J., 447, 371, 10.1042/BJ20120705
Rizzuto, 2009, Ca2+ transfer from the ER to mitochondria: when, how and why, Biochim. Biophys. Acta, 1787, 1342, 10.1016/j.bbabio.2009.03.015
De Stefani, 2011, A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter, Nature, 476, 336, 10.1038/nature10230
Baughman, 2011, Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter, Nature, 476, 341, 10.1038/nature10234
Mallilankaraman, 2012, MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival, Cell, 151, 630, 10.1016/j.cell.2012.10.011
Sammels, 2010, Intracellular Ca2+ storage in health and disease: a dynamic equilibrium, Cell Calcium, 47, 297, 10.1016/j.ceca.2010.02.001
Cardenas, 2010, Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria, Cell, 142, 270, 10.1016/j.cell.2010.06.007
Higo, 2010, Mechanism of ER stress-induced brain damage by IP3 receptor, Neuron, 68, 865, 10.1016/j.neuron.2010.11.010
Bonora, 2012, ATP synthesis and storage, Purinergic Signal, 8, 343, 10.1007/s11302-012-9305-8
White, 2005, The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R, Nat. Cell Biol., 7, 1021, 10.1038/ncb1302
Gorlich, 1993, Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane, Cell, 75, 615, 10.1016/0092-8674(93)90483-7
Nicchitta, 1995, Stage- and ribosome-specific alterations in nascent chain-Sec61p interactions accompany translocation across the ER membrane, J. Cell Biol., 129, 957, 10.1083/jcb.129.4.957
Schauble, 2012, BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER, EMBO J., 31, 3282, 10.1038/emboj.2012.189
Joseph, 2007, IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond, Apoptosis, 12, 951, 10.1007/s10495-007-0719-7
Pinton, 2008, Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis, Oncogene, 27, 6407, 10.1038/onc.2008.308
Bathori, 2006, Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC), J. Biol. Chem., 281, 17347, 10.1074/jbc.M600906200
Kroemer, 2007, Mitochondrial membrane permeabilization in cell death, Physiol. Rev., 87, 99, 10.1152/physrev.00013.2006
Baumgartner, 2009, Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening, J. Biol. Chem., 284, 20796, 10.1074/jbc.M109.025353
Jayaraman, 1997, T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis, Mol. Cell. Biol., 17, 3005, 10.1128/MCB.17.6.3005
Assefa, 2004, Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis, J. Biol. Chem., 279, 43227, 10.1074/jbc.M403872200
Khan, 2007, Role of inositol 1,4,5-trisphosphate receptors in apoptosis in DT40 lymphocytes, J. Biol. Chem., 282, 32983, 10.1074/jbc.M705183200
Steinmann, 2008, Requirement of inositol 1,4,5-trisphosphate receptors for tumor-mediated lymphocyte apoptosis, J. Biol. Chem., 283, 13506, 10.1074/jbc.C800029200
Verbert, 2008, Caspase-3-truncated type 1 inositol 1,4,5-trisphosphate receptor enhances intracellular Ca2+ leak and disturbs Ca2+ signalling, Biol. Cell, 100, 39, 10.1042/BC20070086
Marchi, 2012, Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis, Cell Death Dis., 3, e304, 10.1038/cddis.2012.45
Kiviluoto, 2012, IP3 receptor‐binding partners in cell‐death mechanisms
Roderick, 2008, Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival, Nat. Rev. Cancer, 8, 361, 10.1038/nrc2374
Sano, 2009, GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis, Mol. Cell, 36, 500, 10.1016/j.molcel.2009.10.021
Chipuk, 2012, Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis, Cell, 148, 988, 10.1016/j.cell.2012.01.038
Swinnen, 2006, Increased lipogenesis in cancer cells: new players, novel targets, Curr. Opin. Clin. Nutr. Metab. Care, 9, 358, 10.1097/01.mco.0000232894.28674.30
Hirota, 1999, Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner, J. Biol. Chem., 274, 34433, 10.1074/jbc.274.48.34433
Nakayama, 2004, The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: possible physiological significance of specific cleavage by caspase 3, Biochem. J., 377, 299, 10.1042/bj20030599
Boehning, 2003, Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis, Nat. Cell Biol., 5, 1051, 10.1038/ncb1063
Boehning, 2005, A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways, Proc. Natl. Acad. Sci. U. S. A., 102, 1466, 10.1073/pnas.0409650102
Elkoreh, 2012, Type 1 inositol-1,4,5-trisphosphate receptor is a late substrate of caspases during apoptosis, J. Cell. Biochem., 113, 2775, 10.1002/jcb.24155
Akimzhanov, 2012, Caspase 3 cleavage of the inositol 1,4,5-trisphosphate receptor does not contribute to apoptotic calcium release, Cell Calcium
Kopil, 2011, Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) has InsP3-independent gating and disrupts intracellular Ca2+ homeostasis, J. Biol. Chem., 286, 35998, 10.1074/jbc.M111.254177
Monaco, 2012, Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl, Cell Death Differ., 19, 295, 10.1038/cdd.2011.97
Decrock, 2012, Transfer of IP3 through gap junctions is critical, but not sufficient, for the spread of apoptosis, Cell Death Differ., 19, 947, 10.1038/cdd.2011.176
De Bock, 2012, Connexin-43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+-entry pathway, J. Biol. Chem., 287, 12250, 10.1074/jbc.M111.299610
Zhang, 2009, G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated Ca2+ signal regulation, J. Biol. Chem., 284, 29158, 10.1074/jbc.M109.041509
Kim, 2008, Bax Inhibitor-1 Is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum, J. Biol. Chem., 283, 15946, 10.1074/jbc.M800075200
Bultynck, 2012, The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore, J. Biol. Chem., 287, 2544, 10.1074/jbc.M111.275354
Chae, 2004, BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress, Mol. Cell, 15, 355, 10.1016/j.molcel.2004.06.038
Rimessi, 2009, Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis, Proc. Natl. Acad. Sci. U. S. A., 106, 12753, 10.1073/pnas.0906484106
Monteith, 2012, Calcium channels and pumps in cancer: changes and consequences, J. Biol. Chem., 287, 31666, 10.1074/jbc.R112.343061
Arbabian, 2011, Endoplasmic reticulum calcium pumps and cancer, Biofactors, 37, 139, 10.1002/biof.142
Prevarskaya, 2011, Calcium in tumour metastasis: new roles for known actors, Nat. Rev. Cancer, 11, 609, 10.1038/nrc3105
Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013
Szatkowski, 2010, Inositol 1,4,5-trisphosphate-induced Ca2+ signalling is involved in estradiol-induced breast cancer epithelial cell growth, Mol. Cancer, 9, 156, 10.1186/1476-4598-9-156
Shibao, 2010, The type III inositol 1,4,5-trisphosphate receptor is associated with aggressiveness of colorectal carcinoma, Cell Calcium, 48, 315, 10.1016/j.ceca.2010.09.005
Kang, 2010, Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival, Cancer Res., 70, 1173, 10.1158/0008-5472.CAN-09-2886
Tsunoda, 2005, Inositol 1,4,5-trisphosphate (IP3) receptor type1 (IP3R1) modulates the acquisition of cisplatin resistance in bladder cancer cell lines, Oncogene, 24, 1396, 10.1038/sj.onc.1208313
Boehmerle, 2006, Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism, Proc. Natl. Acad. Sci. U. S. A., 103, 18356, 10.1073/pnas.0607240103
Fujimoto, 2011, KRAS-induced actin-interacting protein is required for the proper localization of inositol 1,4,5-trisphosphate receptor in the epithelial cells, Biochem. Biophys. Res. Commun., 407, 438, 10.1016/j.bbrc.2011.03.065
Stephens, 1998, Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B, Science, 279, 710, 10.1126/science.279.5351.710
Downward, 2004, PI 3-kinase, Akt and cell survival, Semin. Cell Dev. Biol., 15, 177, 10.1016/j.semcdb.2004.01.002
Blanco-Aparicio, 2007, PTEN, more than the AKT pathway, Carcinogenesis, 28, 1379, 10.1093/carcin/bgm052
Chan, 2001, PDK2: a complex tail in one Akt, Sci. STKE, 2001, e1, 10.1126/stke.2001.66.pe1
Hers, 2011, Akt signalling in health and disease, Cell. Signal., 23, 1515, 10.1016/j.cellsig.2011.05.004
Dahia, 2000, PTEN, a unique tumor suppressor gene, Endocr. Relat. Cancer, 7, 115, 10.1677/erc.0.0070115
Song, 2012, The functions and regulation of the PTEN tumour suppressor, Nat. Rev. Mol. Cell Biol., 13, 283, 10.1038/nrm3330
Parsons, 2005, Colorectal cancer: mutations in a signalling pathway, Nature, 436, 792, 10.1038/436792a
Samuels, 2006, Oncogenic PI3K and its role in cancer, Curr. Opin. Oncol., 18, 77, 10.1097/01.cco.0000198021.99347.b9
Vivanco, 2002, The phosphatidylinositol 3-Kinase AKT pathway in human cancer, Nat. Rev. Cancer, 2, 489, 10.1038/nrc839
Carnero, 2010, The PKB/AKT pathway in cancer, Curr. Pharm. Des., 16, 34, 10.2174/138161210789941865
Zhang, 2011, Akt, FoxO and regulation of apoptosis, Biochim. Biophys. Acta, 1813, 1978, 10.1016/j.bbamcr.2011.03.010
Dansen, 2008, Unravelling the tumor-suppressive functions of FOXO proteins, Trends Cell Biol., 18, 421, 10.1016/j.tcb.2008.07.004
Oren, 2003, Decision making by p53: life, death and cancer, Cell Death Differ., 10, 431, 10.1038/sj.cdd.4401183
Meulmeester, 2008, p53: a guide to apoptosis, Curr. Cancer Drug Targets, 8, 87, 10.2174/156800908783769337
Samuels, 2004, High frequency of mutations of the PIK3CA gene in human cancers, Science, 304, 554, 10.1126/science.1096502
Laplante, 2012, mTOR signaling in growth control and disease, Cell, 149, 274, 10.1016/j.cell.2012.03.017
Floor, 2012, Hallmarks of cancer: of all cancer cells, all the time?, Trends Mol. Med., 18, 509, 10.1016/j.molmed.2012.06.005
O'Reilly, 2006, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt, Cancer Res., 66, 1500, 10.1158/0008-5472.CAN-05-2925
Khan, 2006, Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors, J. Biol. Chem., 281, 3731, 10.1074/jbc.M509262200
Szado, 2008, Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis, Proc. Natl. Acad. Sci. U.S.A., 105, 2427, 10.1073/pnas.0711324105
Marchi, 2008, Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli, Biochem. Biophys. Res. Commun., 375, 501, 10.1016/j.bbrc.2008.07.153
Haas-Kogan, 1998, Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC, Curr. Biol., 8, 1195, 10.1016/S0960-9822(07)00493-9
Blackshaw, 2000, Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death, FASEB J., 14, 1375, 10.1096/fj.14.10.1375
Mendes, 2005, The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria, J. Biol. Chem., 280, 40892, 10.1074/jbc.M506623200
Anyatonwu, 2010, Calcium-dependent conformational changes in inositol trisphosphate receptors, J. Biol. Chem., 285, 25085, 10.1074/jbc.M110.123208
Schug, 2006, The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function, J. Biol. Chem., 281, 24431, 10.1074/jbc.M604190200
Ito, 2008, Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs, Dev. Biol., 320, 402, 10.1016/j.ydbio.2008.05.548
Vanderheyden, 2009, Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation, Cell Calcium, 46, 56, 10.1016/j.ceca.2009.04.004
Tang, 2003, Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha, J. Neurosci., 23, 403, 10.1523/JNEUROSCI.23-02-00403.2003
Kawaai, 2009, 80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity, J. Biol. Chem., 284, 372, 10.1074/jbc.M805828200
Fukatsu, 2006, 4.1N binding regions of inositol 1,4,5-trisphosphate receptor type 1, Biochem. Biophys. Res. Commun., 342, 573, 10.1016/j.bbrc.2006.02.010
Tang, 2003, Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1, Neuron, 39, 227, 10.1016/S0896-6273(03)00366-0
Foskett, 2007, Inositol trisphosphate receptor Ca2+ release channels, Physiol. Rev., 87, 593, 10.1152/physrev.00035.2006
Parys, 2012, Inositol 1,4,5-trisphosphate and its receptors, Adv. Exp. Med. Biol., 740, 255, 10.1007/978-94-007-2888-2_11
Hagar, 1998, Type III InsP3 receptor channel stays open in the presence of increased calcium, Nature, 396, 81, 10.1038/23954
Bezprozvanny, 1991, Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature, 351, 751, 10.1038/351751a0
Bootman, 1995, Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+, Biochem. J., 306, 445, 10.1042/bj3060445
Missiaen, 1997, Effect of a cytosolic Ca2+ concentration ramp on InsP3-induced Ca2+ release in A7r5 smooth-muscle cells and in EBTr cells from tracheal mucosa, Biochem. Biophys. Res. Commun., 237, 354, 10.1006/bbrc.1997.7137
Missiaen, 1998, Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells, J. Biol. Chem., 273, 8983, 10.1074/jbc.273.15.8983
Fregeau, 2011, Positive regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by mammalian target of rapamycin (mTOR) in RINm5F cells, J. Cell. Biochem., 112, 723, 10.1002/jcb.23006
Brunelle, 2009, Control of mitochondrial apoptosis by the Bcl-2 family, J. Cell Sci., 122, 437, 10.1242/jcs.031682
Chipuk, 2010, The BCL-2 family reunion, Mol. Cell, 37, 299, 10.1016/j.molcel.2010.01.025
Tsujimoto, 1985, Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation, Nature, 315, 340, 10.1038/315340a0
Aisenberg, 1988, The bcl-2 gene is rearranged in many diffuse B-cell lymphomas, Blood, 71, 969, 10.1182/blood.V71.4.969.969
Raghoebier, 1991, Oncogene rearrangements in chronic B-cell leukemia, Blood, 77, 1560, 10.1182/blood.V77.7.1560.1560
Dyer, 1994, BCL2 translocations in leukemias of mature B cells, Blood, 83, 3682, 10.1182/blood.V83.12.3682.3682
Dighiero, 1996, Chronic lymphocytic leukemia, Hematol. Cell Ther., 38, S41
Adachi, 1989, Variant translocation of the bcl-2 gene to immunoglobulin lambda light chain gene in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U.S.A., 86, 2771, 10.1073/pnas.86.8.2771
Calin, 2005, A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia, N. Engl. J. Med., 353, 1793, 10.1056/NEJMoa050995
Carney, 2005, Genetics and molecular biology of chronic lymphocytic leukemia, Curr. Treat. Options Oncol., 6, 215, 10.1007/s11864-005-0005-2
Calin, 2007, The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia, Best Pract. Res. Clin. Haematol., 20, 425, 10.1016/j.beha.2007.02.003
Kelly, 2011, The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy, Cell Death Differ., 18, 1414, 10.1038/cdd.2011.17
Chresta, 1996, Apoptosis and cancer chemotherapy, Behring Inst. Mitt., 232
Daniel, 2004, The role of Bcl-2 family members in non-small cell lung cancer, Semin. Thorac. Cardiovasc. Surg., 16, 19, 10.1053/j.semtcvs.2004.01.002
Letai, 2008, Diagnosing and exploiting cancer's addiction to blocks in apoptosis, Nat. Rev. Cancer, 8, 121, 10.1038/nrc2297
Arbel, 2010, Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity, J. Biol. Chem., 285, 6053, 10.1074/jbc.M109.082990
De Stefani, 2012, VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria, Cell Death Differ., 19, 267, 10.1038/cdd.2011.92
Lam, 1994, Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes, Proc. Natl. Acad. Sci. U. S. A., 91, 6569, 10.1073/pnas.91.14.6569
Distelhorst, 1996, Bcl-2 inhibits hydrogen peroxide-induced ER Ca2+ pool depletion, Oncogene, 12, 2051
Breckenridge, 2003, Regulation of apoptosis by endoplasmic reticulum pathways, Oncogene, 22, 8608, 10.1038/sj.onc.1207108
Distelhorst, 2004, Bcl-2 and calcium: controversy beneath the surface, Oncogene, 23, 2875, 10.1038/sj.onc.1207519
Pinton, 2000, Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells, J. Cell Biol., 148, 857, 10.1083/jcb.148.5.857
Pinton, 2001, The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action, EMBO J., 20, 2690, 10.1093/emboj/20.11.2690
Scorrano, 2003, BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis, Science, 300, 135, 10.1126/science.1081208
Palmer, 2004, Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor, Proc. Natl. Acad. Sci. U. S. A., 101, 17404, 10.1073/pnas.0408030101
Oakes, 2005, Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A., 102, 105, 10.1073/pnas.0408352102
Li, 2007, Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating, Proc. Natl. Acad. Sci. U.S.A., 104, 12565, 10.1073/pnas.0702489104
Xu, 2008, BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins, J. Biol. Chem., 283, 11477, 10.1074/jbc.M708385200
Rojas-Rivera, 2010, Alternative functions of the BCL-2 protein family at the endoplasmic reticulum, Adv. Exp. Med. Biol., 687, 33, 10.1007/978-1-4419-6706-0_2
Lust, 2009, Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia, Anticancer Res., 29, 3797
Boelens, 2012, ER stress in diffuse large B cell lymphoma: GRP94 is a possible biomarker in germinal center versus activated B-cell type, Leuk. Res., 37, 3, 10.1016/j.leukres.2012.08.017
Chen, 2004, Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate, J. Cell Biol., 166, 193, 10.1083/jcb.200309146
Zhong, 2006, Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation, J. Cell Biol., 172, 127, 10.1083/jcb.200506189
Rong, 2008, Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals, Mol. Cell, 31, 255, 10.1016/j.molcel.2008.06.014
Hanson, 2008, Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content, Cell Calcium, 44, 324, 10.1016/j.ceca.2008.01.003
Distelhorst, 2011, Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca2+ signaling and disease, Cell Calcium, 50, 234, 10.1016/j.ceca.2011.05.011
Rong, 2009, The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor, Proc. Natl. Acad. Sci. U.S.A., 106, 14397, 10.1073/pnas.0907555106
Zhong, 2011, Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction, Blood, 117, 2924, 10.1182/blood-2010-09-307405
Certo, 2006, Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members, Cancer Cell, 9, 351, 10.1016/j.ccr.2006.03.027
Del Gaizo Moore, 2007, Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737, J. Clin. Invest., 117, 112, 10.1172/JCI28281
Deng, 2007, BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents, Cancer Cell, 12, 171, 10.1016/j.ccr.2007.07.001
Ni Chonghaile, 2011, Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy, Science, 334, 1129, 10.1126/science.1206727
Rong, 2008, Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis, Annu. Rev. Physiol., 70, 73, 10.1146/annurev.physiol.70.021507.105852
Rodriguez, 2011, Integrating stress signals at the endoplasmic reticulum: The BCL-2 protein family rheostat, Biochim. Biophys. Acta, 1813, 564, 10.1016/j.bbamcr.2010.11.012
Xerri, 1998, BCL-X and the apoptotic machinery of lymphoma cells, Leuk. Lymphoma, 28, 451, 10.3109/10428199809058352
Benyamini, 2011, The ASPP interaction network: electrostatic differentiation between pro- and anti-apoptotic proteins, J. Mol. Recognit., 24, 266, 10.1002/jmr.1048
Kampa, 2009, New insights into the expanding complexity of the tumor suppressor ASPP2, Cell Cycle, 8, 2871, 10.4161/cc.8.18.9474
Katz, 2008, Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2, Proc. Natl. Acad. Sci. U.S.A., 105, 12277, 10.1073/pnas.0711269105
Monaco, 2012, The selective BH4-domain biology of Bcl-2-family members: IP 3 Rs and beyond, Cell. Mol. Life Sci., 1
Ahn, 2009, Insight into the structural basis of pro- and antiapoptotic p53 modulation by ASPP proteins, J. Biol. Chem., 284, 13812, 10.1074/jbc.M808821200
Sullivan, 2007, ASPP: a new family of oncogenes and tumour suppressor genes, Br. J. Cancer, 96, 196, 10.1038/sj.bjc.6603525
Vives, 2006, ASPP2: a gene that controls life and death in vivo, Cell Cycle, 5, 2187, 10.4161/cc.5.19.3266
Eckenrode, 2010, Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling, J. Biol. Chem., 285, 13678, 10.1074/jbc.M109.096040
Foskett, 2009, Bcl-xL regulation of InsP3 receptor gating mediated by dual Ca2+ release channel BH3 domains, Biophys. J., 96, 391a, 10.1016/j.bpj.2008.12.2917
Li, 2002, Bcl-X(L) affects Ca2+ homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors, Proc. Natl. Acad. Sci. U.S.A., 99, 9830, 10.1073/pnas.152571899
Arbel, 2012, Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein, J. Biol. Chem., 287, 23152, 10.1074/jbc.M112.345918
Eno, 2012, Distinct roles of mitochondria- and ER-localized Bcl-xL in apoptosis resistance and Ca2+ homeostasis, Mol. Biol. Cell, 23, 2605, 10.1091/mbc.E12-02-0090
Chen, 2005, Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function, Mol. Cell, 17, 393, 10.1016/j.molcel.2004.12.030
Derenne, 2002, Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells, Blood, 100, 194, 10.1182/blood.V100.1.194
Rassidakis, 2002, Overexpression of Mcl-1 in anaplastic large cell lymphoma cell lines and tumors, Am. J. Pathol., 160, 2309, 10.1016/S0002-9440(10)61178-9
Cho-Vega, 2004, MCL-1 expression in B-cell non-Hodgkin's lymphomas, Hum. Pathol., 35, 1095, 10.1016/j.humpath.2004.04.018
Aichberger, 2005, Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides, Blood, 105, 3303, 10.1182/blood-2004-02-0749
Sieghart, 2006, Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy, J. Hepatol., 44, 151, 10.1016/j.jhep.2005.09.010
Akgul, 2009, Mcl-1 is a potential therapeutic target in multiple types of cancer, Cell. Mol. Life Sci., 66, 1326, 10.1007/s00018-008-8637-6
Varadarajan, 2012, A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum, Cell Death Differ., 19, 1896, 10.1038/cdd.2012.108
Urra, 2012, The ER in 4D: a novel stress pathway controlling endoplasmic reticulum membrane remodeling, Cell Death Differ., 19, 1893, 10.1038/cdd.2012.127
Huang, 2006, ER stress disrupts Ca2+-signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice, J. Cell Sci., 119, 153, 10.1242/jcs.02731
Xu, 1998, Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast, Mol. Cell, 1, 337, 10.1016/S1097-2765(00)80034-9
Reimers, 2008, The Bax Inhibitor-1 (BI-1) family in apoptosis and tumorigenesis, Curr. Mol. Med., 8, 148, 10.2174/156652408783769562
Robinson, 2011, Bax inhibitor 1 in apoptosis and disease, Oncogene, 30, 2391, 10.1038/onc.2010.636
Schmits, 2002, Analysis of the antibody repertoire of astrocytoma patients against antigens expressed by gliomas, Int. J. Cancer, 98, 73, 10.1002/ijc.10170
Grzmil, 2003, Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells, Am. J. Pathol., 163, 543, 10.1016/S0002-9440(10)63682-6
Grzmil, 2006, Expression and functional analysis of Bax inhibitor-1 in human breast cancer cells, J. Pathol., 208, 340, 10.1002/path.1902
Tanaka, 2006, Expression of the Bax inhibitor-1 gene in pulmonary adenocarcinoma, Cancer, 106, 648, 10.1002/cncr.21639
Anderson, 2006, Cross-species hybridization of woodchuck hepatitis virus-induced hepatocellular carcinoma using human oligonucleotide microarrays, World J. Gastroenterol., 12, 4646, 10.3748/wjg.v12.i29.4646
Zhang, 2010, Bax inhibitor-1 mediates apoptosis-resistance in human nasopharyngeal carcinoma cells, Mol. Cell. Biochem., 333, 1, 10.1007/s11010-009-0198-y
Lee, 2010, BAX inhibitor-1 enhances cancer metastasis by altering glucose metabolism and activating the sodium–hydrogen exchanger: the alteration of mitochondrial function, Oncogene, 29, 2130, 10.1038/onc.2009.491
Lee, 2011, An acidic pH environment increases cell death and pro-inflammatory cytokine release in osteoblasts: the involvement of BAX inhibitor-1, Int. J. Biochem. Cell Biol., 43, 1305, 10.1016/j.biocel.2011.05.004
Lee, 2010, Bax inhibitor 1 increases cell adhesion through actin polymerization: involvement of calcium and actin binding, Mol. Cell. Biol., 30, 1800, 10.1128/MCB.01357-09
Henke, 2011, The ancient cell death suppressor BAX inhibitor-1, Cell Calcium, 50, 251, 10.1016/j.ceca.2011.05.005
Kiviluoto, 2012, Bax Inhibitor-1 is a novel IP3 receptor-interacting and -sensitizing protein, Cell Death Dis., 3, e367, 10.1038/cddis.2012.103
Sano, 2012, Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy, Genes Dev., 26, 1041, 10.1101/gad.184325.111
Guo, 2011, Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Dev., 25, 460, 10.1101/gad.2016311
Fujimoto, 2011, KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release, Biochem. Biophys. Res. Commun., 408, 214, 10.1016/j.bbrc.2011.03.112
Castillo, 2011, BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response, EMBO J., 30, 4465, 10.1038/emboj.2011.318
Lisbona, 2009, BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha, Mol. Cell, 33, 679, 10.1016/j.molcel.2009.02.017
Inokuchi, 2004, Deregulated expression of KRAP, a novel gene encoding actin-interacting protein, in human colon cancer cells, J. Hum. Genet., 49, 46, 10.1007/s10038-003-0106-3
Fujimoto, 2007, Analysis of KRAP expression and localization, and genes regulated by KRAP in a human colon cancer cell line, J. Hum. Genet., 52, 978, 10.1007/s10038-007-0204-8
Fujimoto, 2009, Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice, PLoS One, 4, e4240, 10.1371/journal.pone.0004240
Dingli, 2012, Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation, J. Cell Sci., 10.1242/jcs.108738
Fujimoto, 2012, Identification of KRAP-expressing cells and the functional relevance of KRAP to the subcellular localization of IP3R in the stomach and kidney, Int. J. Mol. Med., 30, 1287, 10.3892/ijmm.2012.1126
Fujimoto, 2011, Determination of the critical region of KRAS-induced actin-interacting protein for the interaction with inositol 1,4,5-trisphosphate receptor, Biochem. Biophys. Res. Commun., 408, 282, 10.1016/j.bbrc.2011.04.016
Fujimoto, 2011, KRAS-induced actin-interacting protein: a potent target for obesity, diabetes and cancer, Anticancer Res., 31, 2413
Satelli, 2011, Vimentin in cancer and its potential as a molecular target for cancer therapy, Cell. Mol. Life Sci., 68, 3033, 10.1007/s00018-011-0735-1
Salomoni, 2002, The role of PML in tumor suppression, Cell, 108, 165, 10.1016/S0092-8674(02)00626-8
Salomoni, 2008, New insights into the role of PML in tumour suppression, Cell Res., 18, 622, 10.1038/cr.2008.58
Pinton, 2011, The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites, Cell Death Differ., 18, 1450, 10.1038/cdd.2011.31
Bernardi, 2007, Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies, Nat. Rev. Mol. Cell Biol., 8, 1006, 10.1038/nrm2277
Bernardi, 2008, Regulation of apoptosis by PML and the PML-NBs, Oncogene, 27, 6299, 10.1038/onc.2008.305
Wang, 1998, PML is essential for multiple apoptotic pathways, Nat. Genet., 20, 266, 10.1038/3030
Rego, 2001, Role of promyelocytic leukemia (PML) protein in tumor suppression, J. Exp. Med., 193, 521, 10.1084/jem.193.4.521
Trotman, 2006, Identification of a tumour suppressor network opposing nuclear Akt function, Nature, 441, 523, 10.1038/nature04809
Giorgi, 2010, PML regulates apoptosis at endoplasmic reticulum by modulating calcium release, Science, 330, 1247, 10.1126/science.1189157
Miyakawa, 1999, Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes, EMBO J., 18, 1303, 10.1093/emboj/18.5.1303
Scupoli, 2012, Signaling pathways activated by the B-cell receptor in chronic lymphocytic leukemia, Expert Rev. Hematol., 5, 341, 10.1586/ehm.12.21
Woyach, 2012, The B-cell receptor signaling pathway as a therapeutic target in CLL, Blood, 120, 1175, 10.1182/blood-2012-02-362624
Sinha, 2008, The autophagy effector Beclin 1: a novel BH3-only protein, Oncogene, 27, S137, 10.1038/onc.2009.51
Klionsky, 2011, A comprehensive glossary of autophagy-related molecules and processes (2nd edition), Autophagy, 7, 1273, 10.4161/auto.7.11.17661
Kang, 2011, The Beclin 1 network regulates autophagy and apoptosis, Cell Death Differ., 18, 571, 10.1038/cdd.2010.191
Zalckvar, 2009, DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy, EMBO Rep., 10, 285, 10.1038/embor.2008.246
Zalckvar, 2009, Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL, Autophagy, 5, 720, 10.4161/auto.5.5.8625
Bialik, 2010, Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy, Curr. Opin. Cell Biol., 22, 199, 10.1016/j.ceb.2009.11.004
Wei, 2008, JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy, Mol. Cell, 30, 678, 10.1016/j.molcel.2008.06.001
Pattingre, 2009, Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy, J. Biol. Chem., 284, 2719, 10.1074/jbc.M805920200
Lorin, 2010, Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy, Autophagy, 6, 153, 10.4161/auto.6.1.10537
Wang, 2012, Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation, Science, 338, 956, 10.1126/science.1225967
Koren, 2012, Promoting tumorigenesis by suppressing autophagy, Science, 338, 889, 10.1126/science.1230577
He, 2010, The Beclin 1 interactome, Curr. Opin. Cell Biol., 22, 140, 10.1016/j.ceb.2010.01.001
Decuypere, 2012, Regulation of the autophagic Bcl-2/Beclin 1 interaction, Cells, 1, 284, 10.3390/cells1030284
Liang, 1999, Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, 402, 672, 10.1038/45257
Gozuacik, 2004, Autophagy as a cell death and tumor suppressor mechanism, Oncogene, 23, 2891, 10.1038/sj.onc.1207521
Qu, 2003, Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene, J. Clin. Invest., 112, 1809, 10.1172/JCI20039
Yue, 2003, Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor, Proc. Natl. Acad. Sci. U.S.A., 100, 15077, 10.1073/pnas.2436255100
White, 2012, Deconvoluting the context-dependent role for autophagy in cancer, Nat. Rev. Cancer, 12, 401, 10.1038/nrc3262
Mathew, 2011, Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night, Curr. Opin. Genet. Dev., 21, 113, 10.1016/j.gde.2010.12.008
Aita, 1999, Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21, Genomics, 59, 59, 10.1006/geno.1999.5851
Morselli, 2009, Anti- and pro-tumor functions of autophagy, Biochim. Biophys. Acta, 1793, 1524, 10.1016/j.bbamcr.2009.01.006
Vicencio, 2009, The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1, Cell Death Differ., 16, 1006, 10.1038/cdd.2009.34
Decuypere, 2011, IP 3 receptor-mediated Ca (2+) signaling and autophagy induction are interrelated, Autophagy, 7, 10.4161/auto.7.12.17909
Decuypere, 2011, A dual role for Ca2+ in autophagy regulation, Cell Calcium, 50, 242, 10.1016/j.ceca.2011.04.001
Decuypere, 2011, IP3 receptors, mitochondria, and Ca signaling: implications for aging, J. Aging Res., 2011, 920178, 10.4061/2011/920178