Alterations in sodium metabolism as an etiological model for hypertension

Springer Science and Business Media LLC - Tập 9 - Trang 377-399 - 1995
Paul Lijnen1
1Hypertension and Cardiovascular Rehabilitation Unit, Department of Molecular and Cardiovascular Research, University of Leuven, Belgium

Tóm tắt

An adequate matching for race, sex, stage of the menstrual cycle, family history of hypertension, and the amount of sodium and other electrolytes in the diet should be a prerequisite for valid conclusions when interpreting the erythrocyte concentration and fluxes of sodium in essential hypertensive patients in comparison with normal subjects. Alterations in intracellular sodium concentration and transmembrane sodium transport systems as causes of essential hypertension are postulated. This review article describes how this abnormal sodium and calcium metabolism translates into increased systemic vascular resistance through altered vasoactive responses and/or vasculature structural changes.

Tài liệu tham khảo

Lee C, Dagostino M. Effect of strophantidin on the intracellular Na+ activity and twitch tension of constantly driven canine cardiac Purkinje fibers.Biophys J 1982;40:185–198. Akera T, Brody T. Estimating sodium pump activity in beating heart muscle.Trends Pharmacol Sci 1985;6:156–159. Whittaker J, Hawkins M., Swaminathan R. Changes in erythrocyte sodium, sodium transport and3H-ouabain binding capacity during digoxin administration in the pig.Life Sci 1983;32:747–754. Post RL, Merritt CR, Kinsolving CR, et al. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in human erythrocytes.J Biol Chem 1960;235:1796–1802. Beutler E, Kuhl W. Guanosine triphosphatase activity in human erythrocyte membrane.Biochem Biophys Acta 1980;601:372–379. De Luise M, Blackburn GM, Flier JS. Reduced activity of the red cell sodium-potassium pump in human obesity.N Engl J Med 1980;305:1017–1022. Bernstein JC, Israel Y. Active transport of Rb86 in human red cells and rat brain slices.J Pharmacol Exp Ther 1970;174:323–329. Love WD, Burch GE. A comparison of potassium42, rubidium86, cesium134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro.J Lab Clin Med 1953;41:351–357. Sachs JR, Welt LG. The concentration dependence of active potassium transport in the human red blood cell.J Clin Invest 1967;46:65–76. Cumberbatch M, Morgan DB. Relations between sodium transport and sodium concentration in human erythrocytes in health and disease.Clin Sci 1981;60:555–564. Hoffman JF, Kregonov FM. The characterization of new energy-dependent cation transport process in red blood cells.Ann NY Acad Sci 1966;137:566–586. Chipperfield AR. Chloride dependence of frusemide- and phloretin-sensitive sodium and potassium fluxes in human red cells.J Physiol 1981;312:435–444. Dunham PB, Stewart GW, Ellory JC. Chloride-activated potassium transport in human erythrocytes.Proc Natl Acad Sci USA 1980;77:7711–7715. Wiley JC, Cooper RA. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J Clin Invest 1974;53:745–755. Brand SC, Whittam R. The effect of furosemide on sodium movements in human red blood cells.J Physiol 1984;348:301–306. Frizzell RA, Field M, Schultz SG. Sodium-coupled chloride transport by epithelial tissues.Am J Physiol 1979;236:F1-F8. Burg HB. Thick ascending limb of Henle's loop.Kidney Int 1982;22:454–464. Sachs JR. Ouabain-insensitive sodium movements in the human red blood cell.J Gen Physiol 1971;57:259–282. Garay RP, Meyer P. A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertensive patients.Lancet 1979;1:349–353. Duhm J, Göbel BO. Sodium-lithium exchange and sodiumpotassium countertransport in human erythrocytes. 1. Evaluation of a simple uptake test to assess the activity of two transport systems.Hypertension 1982;4:468–476. Ussing HH. Transport of ions across cellular membranes.Physiol Rev 1949;29:127–133. Duhm J, Eisenried F, Becker BF, et al. Studies of the lithium transport across the red cell membrane. 1. Li-uphill transport by the Na-dependent Li-countertransport system in human erythrocytes.Pflügers Arch 1976;364:147–155. Haas M, Schooler J, Tosteson C. Coupling of lithium to sodium transport in human red cells.Nature 1975;258:425–427. Pandey GN, Sarkadi B, Haas M, et al. Lithium transport pathways in human red blood cells.J Gen Physiol 1978;72:233–248. Morgan K, Brown RC, Spurlock G, et al. Inhibitin: A specific inhibitor of sodium/sodium exchange in erythrocyte.J Clin Invest 1986;77:538–544. Dissing S, Hoffman JF. Ouabain-insensitive Na-efflux from human red blood cells stimulated by outside H, Na or Li ions.J Gen Physiol 1982;80:15a. Canessa M, Adragna N, Solomon H, et al. Increased sodium-lithium countertransport in red cells of patients with essential hypertension.N Engl J Med 1980;302:772–776. Kleyman TR, Cragoe EJ Jr. Amiloride and its analogs as tools in the study of ion transport.J Membr Biol 1988;105:1–21. Dennis SC, Coetzee WA, Cragoe EJ Jr, Opie LH. Effects of proton buffering and of amiloride derivatives on reperfusion arrhythmias in isolated rat hearts. Possible evidence for an arrhythmogenic role of Na+/H+ exchange.Circ Res 1990;66:1156–1159. Scholz W, Albus U, Linz W, et al. Effects of Na+/H+ exchange inhibitors in cardiac ischemia.J Mol Cell Cardiol 1992;24:731–740. Meng HP, Pierce GN. Protective effects of 5-(N-N-dimethyl) amiloride on ischemia-reperfusion injury in hearts.Am J Physiol 1990;258:H1615-H1619. Scholz W, Albus U, Lang HJ, et al. Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia.Br J Pharmacol 1993;109:562–568. Sack S, Mohri M, Schwarz ER, et al. Effects of a new Na+/H+ antiporter inhibition on postischemic reperfusion in pig heart.J Cardiovasc Pharmacol 1994;23:72–78. Garay RP, Hannaert PA, Nazaret C, Cragoe EJ Jr. The significance of the relative effects of loop diuretics and antibrain edema agents on the Na+,K+,Cl−-cotransport system and the Cl−/NaCO −3 anion exchange.Naunyn-Schmiedeberg Arch Pharmacol 1986;334:202–209. Nazaret C, Diez J, Hannaert PA, et al. Inhibition of the Cl−/NaCO −3 anion exchanger by xipamide in human red blood cells.Eur J Pharmacol 1987;144:353–362. Lijnen P, Fagard R, Staessen J, Amery A. In vitro effect of xipamide on sodium-potassium transport systems in human erythrocytes.Methods Find Exp Clin Pharmacol 1988;10:527–530. Lijnen P, Amery A. Erythrocyte Na+ and K+ transport systems during long-term administration of the diuretic xipamide in men.Methods Find Exp Clin Pharmacol 1989;11:587–594. Funder J, Tosteson DC, Wieth O. Effects of bicarbonate on lithium transport in human red cells.J Gen Physiol 1978;72:233–247. Aderounmu AF, Salako LA. Abnormal cation composition and transport in erythrocytes from hypertensive patients.Eur J Clin Invest 1979;9:369–375. Etkin NL, Mahoney JR, Forsthoefel MW, et al. Racial differences in hypertension-associated red cell sodium permeability.Nature 1982;297:588–589. Fitzgibbon WR, Morgan TO, Meyers JB. Erythrocyte22Na efflux and urinary sodium excretion in essential hypertension.Clin Sci 1980;59(Suppl):195s-197s. Henningsen NC, Mattson S, Nosslin B, et al. Abnormal whole body and cellular (erythrocytes) turnover of22Na in normotensive relatives of probands with established essential hypertension.Clin Sci 1979;57:321s-324s. Mahoney JR, Etkin NL, McSwigan JD, et al. Assessment of red cell sodium transport in essential hypertension.Blood 1982;59:439–442. Postnov YV, Orlov SN, Shevchenko AS, et al. Altered sodium permeability, calcium binding and Na-K-ATPase activity in red blood cell membrane in essential hypertension.Pflügers Arch 1977;371:263–269. Wessels F, Junge-Hulsing G, Losse H. Untersuchungen zur Natriumpermeabilität der Erythrozyten bei Hypertonikern und Normotonikern mit familiärer Hochdruckbelastung.Z Kreislaufforsch 1967;56:374–380. M'Buyamba-Kabangu JR, Lijnen P, Fagard R, Amery A. Intraerythrocyte sodium concentration in black families with and without hypertension.Methods Find Exp Clin Pharmacol 1986;8:437–442. Losse H, Wehmeyer H, Wessels F. Der Wasser- und Elektrolytgehalt von Erythrozyten bei arterieller Hypertonie.Klin Wochenschr 1960;38:393–402. Cole CH. Erythrocyte membrane sodium transport in patients with treated and untreated essential hypertension.Circulation 1983;68:17–22. Gessler U. Intra- und extrazelluläre Elektrolytveränderungen bei essentieller Hypertonie vor und nach Behandlung.Zeitschr Kreislaufforsch 1961;51:177–183. Milar JA, Bramley PM, Paulin JM, et al. Evidence against a circulating ouabain-like transport inhibitor as a cause of increased red cell sodium in essential hypertension.J Hypertens 1984;2(Suppl):461–463. Montanari A, Borghi L, Canali M, et al. Altered sodium efflux in red blood cells from essential hypertensive subjects. In: Losse H, Zumkley H, eds.Intracellular Electrolytes and Arterial Hypertension. Stuttgart: Georg Thieme Verlag, 1980:135–144. Saito K, Furuta Y, Sano H, et al. Abnormal relationship between dietary sodium intake and red cell sodium transport in salt-sensitive patients with essential hypertension.Clin Exp Hypertens 1985;A7:1217–1232. Urry DW, Trapane TL, Andrews KS, et al. NMR observation of altered sodium interaction with human erythrocyte membranes of essential hypertensives.Biochem Biophys Res Commun 1980;96:514–521. Ambrosioni E, Costa FV, Montebugnoli L, et al. Increased intralymphocytic sodium content in essential hypertension.Clin Sci 1981;61:181–186. Araoye MA, Khatri IM, Yao LL, et al. Leukocyte intracellular cations in hypertension: Effect of antihypertensive drugs.Am Heart J 1978;96:731–738. Boon NA, Harper C, Aronson JK, et al. Cation transport functions in vitro in patients with untreated essential hypertension: A comparison of erythrocytes and leucocytes.Clin Sci 1985;68:511–515. Chien Y, Zhao G. Abnormal leucocyte sodium transport in Chinese patients with essential hypertension and their normotensive offspring.Clin Exp Hypertens 1984;A6:2279–2296. Edmondson RPS, Thomas RD, Hilton PJ, et al. Abnormal cation composition and sodium transport in essential hypertension.Lancet 1975;1:1003–1005. Poston L, Sewell RB, Williams R, et al. The effect of low molecular weight natriuretic substance and serum from hypertensive patients on the sodium transport of leucocytes from normal subjects. In: Zumkley H, Losse H, eds.Intracellular Electrolytes and Arterial Hypertension. Stuttgart: Georg Thieme Verlag, 1980:93–97. Duhm J, Göbel B, Lorenz B, et al. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 2: A simple uptake test applied to normotensive and essential hypertensive individuals.Hypertension 1982;4:477–482. Walter U, Distler A. Abnormal sodium efflux in erythrocytes of patients with essential hypertension.Hypertension 1982;4:205–210. Wiley JS, Clarke DA, Bonacquisto LA, et al. Erythrocyte cation cotransport and countertransport in essential hypertension.Hypertension 1984;6:630–638. Minta A, Tsien RY. Fluorescent indicators for cytosolic sodium.J Biol Chem 1989;264:19449–19457. Hurootunian AT, Kao JPY, Eckert BK, Tsien RY. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes.J Biol Chem 1990;265:19458–19467. Borin M, Siffert W. Stimulation by thrombin increases the cytosolic free Na+ concentration in human platelets.J Biol Chem 1990;265:19543–19550. Tepel M, Bauer S, Husseini S, Zidek W. Reduced cytosolic free Na+ concentration in intact platelets of essential hypertensives.J Hypertens 1992;10:991–996. Tepel M, Theilmeier G, Bachmann J, et al. Increased cytosolic sodium and reduced Na, K-ATPase activity in transgenic rats.Hypertension 1994;23(Suppl I): 198–202. Blaustein MP. Sodium transport and hypertension. Where are we going?Hypertension 1984;6:445–453. Erdmann E, Werdan K, Hegelberger R, et al. Determination of the number of (Na+-K+)ATPase, their enzymatic activity and the active Na+/K+ transport in human erythrocytes on hypokalaemia and hypertension. In: Zumkley H, Losse H, eds.Intracellular Electrolytes and Arterial Hypertension. Stuttgart: Georg Thieme Verlag, 1980: 164–170. Swarts HGP, Bonting SL, de Pont JJ, et al. Cation fluxes and Na+,K+ activated ATPase activity in erythrocytes of patients with essential hypertension.Hypertension 1981;3:641–649. Tuck ML, Gross C, Maxwell MM, et al. Erythrocyte Na+,K+-cotransport and Na+,K+ pump in blacks and Caucasian hypertensive patients.Hypertension 1984;6:536–544. Wambach G, Helber A. Na-K-ATPase in erythrocyte ghosts is not a marker for primary hypertension.Clin Exp Hypertens 1981;3:663–673. Garay RP, Elghozi JL, Dagher C, et al. Laboratory distinction between essential and secondary hypertension by measurement of erythrocyte cation fluxes.N Engl J Med 1980;302:769–771. Wambach G, Helber A, Bonner G, et al. Natrium-kalium ATPase Aktivität in Erythrozytenghosts von Patienten mit essentieller Hypertonie.Klin Wochenschr 1979;57:169–172. Woods KL, Beevers DG, West MJ. Racial differences in red cell cation transport and their relationship to essential hypertension.Clin Exp Hypertens 1981;3:655–662. Rygielski DB, Kropp DZ, Duran NN. Hypertension and the Na-K pump (abstract).Fed Proc 1981;40:611. Walter U, Distler A. Effects of ouabain and furosemide on ATPase activity and sodium transport in erythrocytes of normotensives and of patients with essential hypertension. In: Zumkley H, Losse H, eds.Intracellular Electrolytes and Arterial Hypertension. Stuttgart: Georg Thieme Verlag, 1980: 170–181. Forrester TE, Alleyne GAO. Leucocyte electrolytes and sodium efflux rate constants in the hypertension of preeclampsia.Clin Sci 1980;59:199s-201s. Poston L, Sewell RB, Wilkinson SP, et al. Evidence for a circulating sodium transport inhibitor in essential hypertension.Br Med J 1981;282:847–849. Thomas RD, Edmondson RPS, Hilton PJ, et al. Abnormal sodium transport in leucocytes from patients with essential hypertension and the effect of treatment.Clin Sci Mol Med 1975;48:169s-170s. De Wardener HE, McGregor CA. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: Its possible role in essential hypertension.Kidney Int 1980;18:1–9. De Mendonca M, Grichois ML, Garay RP, et al. Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats.Proc Natl Acad Sci USA 1980;77:4283–4286. Cusi D, Barlassina C, Ferrandi M, et al. Relationship between altered Na+,K+-countertransport in the erythrocytes of essential hypertensive patients.Clin Sci 1981;61:335–345. Garay RP, Dagher G, Pernollet MG, et al. Inherited defect in Na+,K+-cotransport system in erythrocytes from essential hypertensive patients.Nature 1980;284:281–283. Davidson J, Opie L, Keding B. Sodium-potassium cotransport activity as genetic marker in essential hypertension.Br Med J 1982;284:539–541. Stessman J, Melker J, Sharon R, et al. Erythrocyte Na+,K+ cotransport and blood pressure in idential twins.Clin Exp Hypertens 1983;A5:493–499. Weder AB, Torretti BA, Julius S. Racial differences in erythrocyte cation transport.Hypertension 1984;6:115–123. Bianchi G, Ferrari P, Trizio D, et al. Red blood cell abnormalities and spontaneous hypertension in the rat. A genetically determined link.Hypertension 1985;7:319–325. Adragna NC, Canessa ML, Solomon H, et al. Red cell lithium sodium countertransport and cotransport in patients with essential hypertension.Hypertension 1982;4:795–804. Canessa M, Spalvins A, Adragna N, et al. Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks.Hypertension 1984;6:344–351. Smith JB, Ash KO, Hunt SC, et al. Three red cell sodium transport systems in hypertensive and normotensive Utah adults.Hypertension 1984;6:159–166. Garay RP, Nazaret C, Dagher G, et al. A genetic approach to the geography of hypertension: Examination of Na+,K+ cotransport in Ivory Coast Africans.Clin Exp Hypertens 1981;3:861–870. M'Buyamba-Kabangu JR, Lijnen P, Groeseneken D, et al. Racial differences in intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of normal male subjects.J Hypertens 1984;2:647–651. Mahnensmith RL, Aronson PS. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathological processes.Circ Res 1985;56:773–788. Weder AB. Red cell lithium-sodium countertransport and renal lithium clearance in hypertension.N Engl J Med 1986;314:198–201. Lijnen P, M'Buyamba-Kabangu JR, Fagard R, et al. Intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of white normal male subjects with and without a family history of hypertension.J Hypertens 1984;2:25–30. Aviv A. The lymphocyte Na+/H+ antiport and its activation by increased NaCl intake: The link with salt sensitivity and cellular Ca+2 regulation.Eur J Clin Invest 1994;24:525–528. Rosskopf D, Düsing R, Siffert W. Membrane sodium-proton exchange and primary hypertension.Hypertension 1993;21:607–617. Hennessey JF, Ober KP. Racial difference in intact erythrocyte ion transport.Ann Clin Lab Sci 1982;12:35–41. Simon G. Is intracellular sodium increased in hypertension?Clin Sci 1989;76:455–461. Carr SJ, Thomas TH. Perturbation of blood cell and platelet membranes in human essential hypertension. In: Swales JD, ed.Textbook of Hypertension. Oxford: Blackwell Scientific Publications, 1994: 160–174. Simon G, Conklin DJ. In vivo erythrocyte sodium concentration in human hypertension is reduced, not increased.J Hypertens 1986;4:71–75. Lijnen P, Groeseneken D, Laermans M, et al. Methodological assessment of assays for intracellular concentrations and transmembrane fluxes of sodium and potassium in erythrocytes of man.Methods Find Exp Clin Pharmacol 1984;6:293–301. Lijnen P, Hespel P, Lommelen G, et al. Intracellular sodium, potassium and magnesium concentration, ouabainsensitive86rubidium-uptake and sodium efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.Methods Find Exp Clin Pharmacol 1986;8:525–533. Postnov YV. An approach to the explanation of cell membrane alteration in primary hypertension.Hypertension 1990;15:332–337. Aalkjaer C, Heagerty AM, Parvin SD, et al. Cell membrane sodium transport: A correlation between human resistance vessels and leucocytes.Lancet 1986;1:649–651. Swales JD. Functional disturbance of the cell membrane in hypertension.J Hypertens 1990;8(Suppl 7):203–211 Jelicks LA, Gupta RK. NMR measurement of free calcium, free magnesium and intracellular sodium in the aorta of the normal and spontaneously hypertensive rat.J Biol Chem 1990;265:1394–1400. Bukowski RD. Intracellular Ca2+ metabolism of isolated resistance arteries and cultured vascular myosites of spontaneously hypertensive and Wistar-Kyoto normotensive rats.J Hypertens 1990;8:37–43. Balfe JW, Cole C, Smith EKM, et al. A hereditary sodium transport defect in the human red blood cell.J Clin Invest 1968;47:4a. Love W, Burch GE. Plasma and erythrocyte sodium and potassium concentration in a group of southern white and negro blood donors.J Lab Clin Med 1953;41:258–267. Munro-Faure AD, Hill DM, Anderson J. Ethnic differences in human blood cell sodium concentration.Nature 1971;231:457–458. Lasker N, Hopp L, Grossman S, et al. Race and sex differences in erythrocyte Na+,K+, and Na+,K+-adenosine triphosphatase.J Clin Invest 1985;75:1813–1820. McGregor GA, Fenton S, Zadeh JA, et al. An increase in a circulating inhibitor of Na+,K+-dependent ATPase: A possible link between salt intake and the development of essential hypertension.Clin Sci 1981;61:17s-20s. Brewer GJ. Genetic and population studies of quantitative levels of adenosine triphosphate in human erythrocytes.Biochem Genet 1967;1:25–34. Woods JW, Falk RJ, Pittman AW, et al. Increased red cell sodium lithium countertransport in normotensive sons of hypertensive parents.N Engl J Med 1982;306:593–595. Gudmundsson O, Andersson O, Herlitz H, et al. Blood pressure, intraerythrocyte content and transmembrane fluxes of sodium during normal and high salt intake in subjects with and without a family history of hypertension.J Hypertens 1984;6:S35-S41. Henningsen NC, Nelson D. Red cell metabolism of sodium in relatives to patients with an established essential hypertension. In: Losse H, Zumkley H, eds.Intracellular Electrolytes and Arterial Hypertension. Stuttgart: Georg Thieme Verlag, 1980;205–212. Zidek W, Vetter H, Dorst KG, et al. Intracellular Na2+ and Ca2+ activities in essential hypertension.Clin Sci 1982;63:41S-44S. Heagerty AM, Milner M, Bing RF, et al. Leucocyte membrane sodium transport in normotensive populations: Dissociation of abnormalities of sodium efflux from raised blood pressure.Lancet 1982;2:894–896. Pedersen KE, Nielson JR, Kjaer K, et al. Na+ influx in lymphocytes from normotensive subjects with and without a family history of essential hypertension.J Hypertens 1983;1:132S-134s. Krzesinski JM. Contribution à l'étio-athogénie de l'hypertension artérielle essentielle par la mesure des flux de sodium et potassium érythrocytaires. Mémoire, Université de Liège, 1985. M'Buyamba-Kabangu JR, Lijnen P, Fagard R, et al. Intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of normal men and women.Arch Gynecol 1985;236:219–224. M'Buyamba-Kabangu JR, Lijnen P, Fagard R, et al. Erythrocyte concentrations and transmembrane fluxes of sodium and potassium and biochemical measurements during the menstrual cycle in normal women.Am J Obstet Gynecol 1985;151:687–693. Englehardt I, Schlolze J, Frille J, et al. Ouabain-insensitive net sodium influx in erythrocytes in health and disease. Submitted for publication 1995. Beilin LJ, Knight GJ, Munro-Faure AD, et al. The sodium, potassium and water contents of red blood cells of healthy human adults.J Clin Invest 1966;45:1817–1825. Stokes GS, Monaghan JC, Marwood JF. Erythrocyte cation transport is sex-related and is modified by oral contraceptives.Clin Exp Hypertens 1985;A7:1199–1215. Sigström L, Waldenström J, Karlberg P. Characteristics of active sodium and potassium transport in erythrocytes of healthy infants and children.Acta Paediatr Scand 1981;70:347–352. Beutler E, Kuhl N, Sachs P. Sodium-potassium-ATPase activity is influenced by ethnic origin and not by obesity.N Engl J Med 1983;309:756–760. Lijnen P, M'Buyamba-Kabangu JR, Fiocchi R, et al. Sodium and potassium fluxes and concentrations in erythrocytes of normal subjects during prolonged sodium depletion and repletion.Postgrad Med J 1986;62:3–12. Trevisan M, Cooper R, Ostrow D, et al. Dietary sodium, erythrocyte sodium concentration, sodium-stimulated lithium efflux and blood pressure.Clin Sci 1981;61:29s-32s. Cooper R, Trevisan M, Van Horn L, et al. Effect of dietary sodium reduction on red blood cell sodium concentration and sodium-lithium countertransport.Hypertension 1984;6:731–735. Morgan T, Myers J, Fitzgibbon W. Sodium intake, blood pressure and red cell sodium efflux.Clip Exp Hypertens 1981;3:641–653. Weissberg PL, West MJ, Wilkins MR, et al. Effects of changes in dietary sodium intake on normotensive subjects with and without a genetic predisposition to essential hypertension.J Hypertens 1984;2:511s-513s. Doucet A. Na-K-ATPase: General considerations, role and regulation in the kidney.Adv Nephrol 1985;14:87–159. Kanazawa T, Saito M, Tonomura Y. Formation and decomposition of a phosphorylated intermediate in the reaction of Na plus-K plus dependent ATPase.J Biochem 1970;67:693–711. Robinson JD, Flashner MS. Cation and nucleotide interactions with the Na,K-ATPase. In: Skou JC, Norby JG, eds.Na,K-ATPase. Structure and Kinetics. London: Academic Press, 1979:275–285. Kojima I, Yoshihara S, Ogata E. Involvement of digitalislike substance in genesis of deoxycorticosterone-salt hypertension.Life Sci 1982;30:1775–1781. Price MB, Pamnani MB, Burris, JF, et al. Acute volume expansion in humans releases a factor which inhibits the vascular Na+,K+ pump.J Hypertens 1984;2(Suppl 3):471–472. Dagher G, Brossard M, Feray JC, et al. Modulation of erythrocyte Na transport pathway(s) by excess Na intake.Life Sci 1985;37:243–253. Beuckelmann D, Erdmann E. Perturbation of sodiumlithium countertransport in red cells.N Engl J Med 1985;312:193–1194. Beilin LJ. The Fifth Sir George Pickering Lecture. Epitaph to essential hypertension—a preventable disorder of known etiology?J Hypertens 1988;6:85–94. Genest J, Lemieux G, Savignon A, et al. Human arterial hypertension: A state of mild chronic hyperaldosteronism.Science 1956;123:503–505. Bianchi G, Cusi D, Gatti M, et al. A renal abnormality as a possible cause of essential hypertension.Lancet 1979;1:173–177. Bianchi G, Ferrari P, Cusi D, et al. Genetic hypertension and the kidney.J Cardiovasc Pharmacol 1984;6(Suppl 1):S162-S170. Esler M, Julius S, Zweifler A, et al. Mild high renin essential hypertension: Neurogenic human hypertension.N Engl J Med 1977;297:405–411. Postnov YV, Orlov SN. Alteration of cell membranes in primary hypertension. In:Hypertension, Physiopathology and treatment. New York: McGraw-Hill, 1983. Meyer P, Garay RP, Mendonca M. Ion transport system in hypertension. In:Hypertension, Physiopathology and Treatment. New York: McGraw-Hill, 1983. Berglund G, Wikstrand J, Wallentin I, et al. Sodium excretion and sympathetic activity in relation to severity of hypertension.Lancet 1976;1:325–328. Kesteloot H, Vuylsteke M, Costenoble A. Relationship between blood pressure and sodium and potassium intake in a Belgian male population group. In: Kesteloot H, Joossens JV, eds.Epidemiology of Arterial Blood Pressure. Martinus Nijhoff, 1980:345. M'Buyamba-Kabangu JR, Staessen J, Fagard R, et al. Blood pressure and urinary cations in urban bantu of Zaïre.Am J Epidemiol 1986;124:957–968. Shibata, Hatano S. A salt restriction trial in Japan. In: Gross F, Strasser T, eds.Mild Hypertension, Natural History and Management. London: Pitman Medical, 1979: 147. McGregor GA. Sodium is more important than calcium in essential hypertension.Hypertension 1985;7:628–640. Joossens JV, Claessen J, Geboers J, Claes JH. Electrolytes and creatinine in multiple 24 hour collections (1970–1974). In: Kestleloot H, Joossens JV, eds.Epidemiology of Arterial Blood Pressure. Amsterdam: Martinus Nijhoff, 1980:45. Simpson FO. Blood pressure and sodium intake. In: Bulpitt CJ, ed.Handbook of Hypertension, Vol. 6, Epidemiology of Hypertension. Amsterdam: Elsevier Science, 1985:175. Gleiberman L. Blood pressure and dietary salt in human populations.Ecol Food Nutr 1973;2:143–149. Intersalt Cooperative Research Group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion.Br Med J 1988;297:319–328. Mtabaji JP, Nara Y, Yamori Y. The cardiac study in Tanzania: Salt intake in the causation and treatment of hypertension.J Hum Hypertens 1990;4:80–81. Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptible to experimental hypertension.J Exp Med 1962;115:1173–1190. Shaper AG, Leonard PJ, Jones KW. Environmental effects on body build, blood pressure and blood chemistry of nomadic warriors serving the army of Kenya.East Afr Med J 1969;46:282–289. Sever PS, Poulter NR. An hypothesis for the pathogenesis of essential hypertension, based on a new human model of migration induced blood pressure. In: Hofman A, Grobbee DE, Schalekamp MADH, eds.The Early Pathogenesis of Hypertension. Amsterdam: Excerpta Medica, 1987:127. McGregor GA, Markandu N, Best F, et al. Double-blind randomized cross-over trial of moderate sodium restriction in essential hypertension.Lancet 1982;1:351–355. Parijs J, Joossens JV, Van Der Linden LV, et al. Moderate sodium restriction and diuretics in the treatment of hypertension.Am Heart J 1973;85:22–34. Kempner W. Treatment of hypertensive vascular disease with rice diet.Am J Med 1948;4:545–577. Haddy FJ. Digitalis-like circulating factor in hypertension, potential messenger between salt balance and intracellular sodium.Cardiovasc Drugs Ther 1990;4(Suppl 2):343–349. Gerber JG, Nies AS. Pharmacology of antihypertensive drugs. In: Genest J, Kuhl O, Hamet P, et al., eds.Hypertension. New York: McGraw-Hill, 1983:1093. Winer BM. Antihypertensive mechanisms of salt depletion induced by hydrochlorothiazide.Circulation 1961;24:788–796. Meyers J, Morgan T. The effect of sodium intake on the blood pressure related to age and sex.Clin Exp Hypertens 1983;(A)5:99–118. Luft FC, Grim CE, Fineberg, Weinberg MC. Effects of volume expansion and contraction in normotensive blacks, whites and subjects of different ages.Circulation 1979;59:643–650. Parker JC, Bukowitz LR. Physiologically instructive genetic variants involving the human red cell membrane.Physiol Rev 1983;63:261–313. Cooper R, Trevisan M, Ostrow D, et al. Blood pressure and sodium-lithium countertransport: Findings in population based surveys.J Hypertens 1984;2:467–471. Swales JD. Interpreting ion transport studies in hypertension: Methods, myths and hypothesis.J Hypertens 1983;1(Suppl 2):391. McDonald AM, Dyer AR, Liu K, et al. Sodium-lithium countertransport and blood pressure control by nutritional intervention in mild hypertension.J Hypertens 1988;6;283–291. Hespel P, Lijnen P, Fiocchi R, et al. Cationic concentrations and transmembrane fluxes in erythrocytes of humans during exercise.J Appl Physiol 1986;61:37–43. Hespel P, Lijnen P, Fagard R, et al. Change in erythrocyte sodium and plasma lipids associated with physical training.J Hypertens 1988;6:159–166. Hunt SC, Williams RR, Ash KO. Changes in sodiumlithium countertransport correlate with changes in triglyceride levels and body mass index over 2 1/2 years of follow-up in Utah.Cardiovasc Drugs Ther 1990;4(Suppl 2):357S-362S. Jones AW. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats: Influence of aldosterone, norepinephrine and angiotensin.Circ Res 1973;33:563–572. Furspan PB, Bohr DF. Lymphocyte abnormalities in three types of hypertension in the rat.Hypertension 1985;7: 860–866. Furspan PB, Bohr DF. Calcium related abnormalities in lymphocytes from genetically hypertensive rats.Hypertension 1986:8(Suppl II):123–126. Van Breemen C, Cauvin C, Johns A, et al. Ca2+ regulation of vascular smooth muscle.Fed Proc 1986;45:2746–2751. Livine A, Bolfe JW, Veitch R, et al. Increased platelet Na-H exchange rates in essential hypertension. Application of a novel test.Lancet 1987;40:533–536. Beck BC, Vallega G, Muslin AJ, et al. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+-H+ exchange.J Clin Invest 1989;83:822–829. David-Dufilho M, Pernollet MG, Sang HL, et al. Active Na+ and Ca2+ transport, Na+-Ca2+ exchange and intracellular Na+ and Ca2+ content in young spontaneously hypertensive rats.J Cardiovasc Pharmacol 1986;8(Suppl 8):130–135. Webb C, Bohr DF. Potassium relaxation of vascular smooth muscle from spontaneously hypertensive rats.Blood Vessels 1979;16:71–79. Orlov SN, Pokudin NI, Postnov YV. Calmodulin-dependent Ca-transport in erythrocytes of spontaneously hypertensive rats.Pflügers Arch 1983;397:54–56. Adeaya SA, Norma RI, Bing RF. Erythrocyte membrane calcium adenosine-5′-triphosphate activity in the spontaneously hypertensive rat.Clin Sci 1989;77:395–400. Dominiczak AF, Bohr DF. Cell membrane abnormalities and the regulation of intracellular calcium concentration in hypertension.Clin Sci 1990;79:415–423. Dominiczak AF, Lazar DF, Das AK, Borh DF. Lipid bilayer in genetic hypertension.Hypertension 1991;18:748–757. Swales JD. Functional disturbance of the cell membrane in hypertension.J Hypertens 1990;8(Suppl 7):203–211. Cooper RA. Abnormalities of cell membrane fluidity in the pathogenesis of disease.N Engl J Med 1977;297:371–377. Kimmelberg HK. Alterations in phospholipid dependent (Na-K) ATPase activity due to lipid fluidity.Biochim Biophys Acta 1975;413:143–146. Grisham CM, Barnett RE. The effects of long-chain alcohols on membrane lipids and the (Na-K) ATPase.Biochim Biophys Acta 1973;411:417–422. Wiley JS, Cooper RA. Inhibition of cation transport by cholesterol enrichment of human red cell membranes.Biochim Biophys Acta 1975;413:425–431. Jackson PA, Morgan DB. The relation between membrane cholesterol and phospholipid and sodium efflux in erythrocytes from healthy subjects and patients with chronic cholestasis.Clin Sci 1982;62:101–107. Lijnen P, Fagard R, Staessen J, et al. Erythrocyte membrane lipids and cationic transport systems in men.J Hypertens 1992;10:1205–1211. Lijnen P, Fenyvesi A, Bex M, et al. Erythrocyte cation transport systems and membrane lipids in insulindependent diabetics.Am J Hypertens 1993;6:763–770. Lijnen P, Celis P, Fagard R, et al. Influence of cholesterol lowering on plasma membrane lipids and cationic transport systems.J Hypertens 1994;12:59–64. Bing RF, Booth GC, Heagerty AM, Swales JD. Erythrocyte membrane calcium binding in normotensive and hypertensive subjects.J Hypertens 1986;4(Suppl 6):299s-302s. Vincenzi FF, Morris CD, Kinsel LB, et al. Decreased calcium pump adenosine triphosphate in red blood cells of hypertensive subjects.Hypertension 1986;8:1058–1066. Touyz RM, Milne FJ, Reinach SG: Platelet and erythrocyte Mg2+, Ca2+, Na+, K+ and cell membrane adenosine triphosphatase activity in essential hypertension in blacks.J Hypertens 1992;10:571–578. Postnov YV, Orlov SN, Reznikova MB, et al. Calmodulin distribution and Ca2+ transport in the erythrocyte of patients with essential hypertension.Clin Sci 1984;66:459–463. Bruschi G, Bruschi MC, Caroppo M, et al. Cytoplasmicfree (Ca2+) is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients.Clin Sci 1985;68:179–184. Erne P, Bolli P, Burgisser E, Buhler F. Correlation of platelet calcium with blood pressure: Effect of antihypertensive therapy.N Engl J Med 1984;310:1084–1088. Bing RF, Heagerty AM, Jackson JA, et al. Leucocyte ionized calcium and sodium content and blood pressure in humans.Hypertension 1986;8:483–488. Resink TJ, Tkachuk VA, Erne P, Buhler FR. Platelet membrane calmodulin-stimulated calcium adenosine triphosphate: Altered activity in essential hypertension.Hypertension 1986;8:159–166. Resnick LM, Gupta RK, Soza KE, et al. Intracellular pH in human and experimental hypertension.Proc Natl Acad Sci USA 1987;84:7663–7667. Tobian L, Janecek A, Tomboulian A, Ferreira D. Sodium and potassium in the walls of the arterioles in experimental renal hypertension.J Clin Invest 1961;40:1922–1925. Swales JD. Membrane transport of ions in hypertension.Cardiovasc Drugs Ther 1990;4(Suppl 2):367–372. Blaustein MP, Hamlyn JM. Sodium transport inhibition, cell calcium and hypertension; the natriuretic hormone /Na+-Ca2+ exchange/hypertension hypothesis.Am J Med 1984;77:45–59. Blaustein MP. Sodium ions, calcium ions, blood pressure regulation and hypertension, a reassessment and a hypothesis.Am J Physiol 1977;232:C165-C173. Bianchi G, Ferrari P. Animal models for arterial hypertension. In: Genest G, Kuchel O, Hamet P, eds.Hypertension. New York: McGraw-Hill, 1983:534. Curtis JJ, Luke RG, Dustan HP, et al. Remission of essential hypertension after renal transplantation.N Engl J Med 1983;309:1009–1015. Skrabal F, Herholz H, Neumayr M, et al. Salt sensitivity in humans is linked to enhanced sympathetic responsiveness and to enhanced proximal tubular reabsorption.Hypertension 1984;6:152–158. Brenner RM, Garcia DL, Anderson S. Glomerule and blood pressure.Am J Hypertens 1988;1:335–347. Haddy FJ. Ionic control of vascular smooth muscle cells.Kidney Int 1988;25(Suppl):S2-S8. Hamlyn JM, Ringel R, Schaeffer H, et al. A circulating inhibitor, of (Na+, K+) ATPase associated with essential hypertension.Nature 1982;300:650–652. De Wardener HE, McGregor GA, Clarkson EM, et al. Effect of sodium intake on ability of human plasma to inhibit renal Na+, K+-adenosine triphosphate in vitro.Lancet 1981;1:411–413. Hasegawa T, Masugi F, Ogihara T, Kumahara Y. Increase in plasma ouabain-like inhibitor of Na+, K+-ATPase with high sodium intake in patients with essential hypertension.J Clin Hypertens 1987;3:419–423. Quintanilla AP, Wagener OE. Diuretics and cation in hypertensive blacks.Cardiovasc Drugs Ther 1990;4:383–387. Haupert GT, Sancho JM. Sodium transport inhibitor in bovine hypothalamus.Proc Natl Acad Sci USA 1979;76:4658–4660. De Wardener HE, Clarkson EM. Concept of natriuretic hormone.Physiol Rev 1985;654:658–759. Morgan K, Lewis MD, Spurlock G, et al. Characterization and partial purification of the sodium, potassium-ATPase inhibitor released from cultured hypothalamic cell.J Biol Chem 1985;260:13595–13600. Haddy FJ. Digitalis-like circulating factor in hypertension: Potential messenger between salt balance and intracellular sodium.Cardiovasc Drugs Ther 1990;4(Suppl 2):343–349. Bova S, Blaustein MP, Ludens JH, et al. Effects of an endogenous ouabain-like compound on heart and aorta.Hypertension 1991;17:944–950. Nabel EG, Berk BC, Brock TA, Swith L. Na-Ca exchange in cultured vascular smooth muscle cells.Circ Res 1988;62:486–493. Smith JB, Grago EJ Jr, Smith L. Na+/Ca2+-antiport in arterial smooth muscle cells: Inhibition by magnesium and other divalent cations.J Biol Chem 1987;262:11988–11994. Mulvany MJ. Changes in sodium pump activity and vascular contraction.J Hypertens 1985;3:429–436. Van Breemen C, Daronson P, Lomt Zenheiser R. Sodium-calcium interaction in mammalian smooth muscle.Pharm Rev 1979;3:167–174. Harder DR, Hermesmeyer K. Membrane mechanism in arterial hypertension.Hypertension 1983;5:404–408. Aalkjaer C, Heagerty AM, Petersen KK, et al. Evidence for increased media thickness and increased neuronal amine uptake, but depressed excitation contraction coupling in isolated resistance vessels from essential hypertension.Circ Res 1987;61:181–186. Aalkjaer C, Heagerty AM, Barley I, et al. Studies of isolated resistance vessels from offspring of essential hypertensive patients.Hypertension 1987;9(Suppl III):155–158. Berk BC, Alexander RW, Brock TA, et al. Vasoconstriction, a new activity for platelet-derived growth factor.Science 1986;232:87–90. Berk BL, Gordon HM, Vekhstein V, et al. Angiotensin II stimulates protein synthesis in vascular smooth muscle independent of C-fos.Clin Res 1988;36:425A. Berk BC, Brock TA, Gimbrone MA Jr, Alexander RW. Early agonist-mediated ionic events in cultured vascular smooth muscle cells.J Biol Chem 1987;262:5065–5072. Berk BC, Brock TA, Well RC, et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction.J Clin Invest 1985;75:1083–1086. Rozengurt E. Early signals in the mitogenic response.Science 1986;234:161–166. L'Allemain G, Franchi A, Cragoe E Jr, Ponyssegur J. Blockade of the Na+/H+-antiport abolishes growth factor induced DNA synthesis in fibroblasts.J Biol Chem 1984;259:4313–4319. Lever AF. Slow pressor mechanisms and smooth muscle mitogens in hypertension.J Clin Hypertens 1987;3:323–327.