Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự thay đổi của hệ thống RANKL/RANK/OPG trong tình trạng loãng xương quanh khớp giả với hiện tượng lỏng huyết mủ
Inflammation - 2015
Tóm tắt
Cơ chế bệnh sinh của tình trạng loãng xương quanh khớp giả với hiện tượng lỏng huyết mủ vẫn chưa được hiểu rõ hoàn toàn. Mục tiêu của nghiên cứu này là điều tra xem sự biểu hiện của hệ thống RANKL/RANK/OPG có bị thay đổi trong các màng giao diện có nhiễm trùng (SIM) hay không. Mười bảy trường hợp có SIM, 26 trường hợp có màng giao diện không nhiễm trùng (AIM), và 12 trường hợp có màng hoạt dịch bình thường (NS) đã được đánh giá. Kính hiển vi quét (SEM) và kính hiển vi truyền (TEM) đã được sử dụng để quan sát hình thái học vi mô của ba điều kiện mô. Sự khác biệt trong biểu hiện RANKL, RANK, và OPG ở mức độ mRNA đã được đánh giá bằng PCR định lượng thời gian thực, và sự khác biệt ở mức độ protein đã được đánh giá bằng nhuộm miễn dịch hóa học và Western blot. SEM cho thấy sự phân bố rộng rãi của các mảnh vụn trong quá trình mài mòn trên bề mặt AIM, và TEM cho thấy hoạt động của Bacillus trong SIM. Sự biểu hiện RANKL và tỷ lệ RANKL/OPG đã tăng đáng kể trong SIM. Mất cân bằng trong hệ thống RANKL/RANK/OPG có liên quan đến tình trạng loãng xương quanh khớp giả với hiện tượng lỏng huyết mủ nhưng không phải là cơ chế bệnh sinh duy nhất có thể xảy ra.
Từ khóa
#RANKL #RANK #OPG #loãng xương quanh khớp giả #màng giao diện nhiễm trùng #cơ chế bệnh sinhTài liệu tham khảo
Learmonth, I.D., C. Young, and C. Rorabeck. 2007. The operation of the century: Total hip replacement. Lancet 370(9597): 1508–1519.
Parvizi, J., B. Adeli, B. Zmistowski, C. Restrepo, and A.S. Greenwald. 2012. Management of periprosthetic joint infection: the current knowledge: AAOS exhibit selection. Journal of Bone and Joint Surgery (American) 94(14): e104.
Goodman, S.B., E. Gibon, and Z. Yao. 2013. The basic science of periprosthetic osteolysis. Instructional Course Lectures 62: 201–206.
Pajarinen, J., E. Cenni, L. Savarino, E. Gomez-Barrena, Y. Tamaki, M. Takagi, J. Salo, and Y.T. Konttinen. 2010. Profile of toll-like receptor-positive cells in septic and aseptic loosening of total hip arthroplasty implants. Journal of Biomedical Materials Research. Part A 94(1): 84–92.
Maoz G, Phillips M, Bosco J, Slover J, Stachel A, Inneh I, and Iorio R. 2014. The Otto Aufranc award: Modifiable versus nonmodifiable risk factors for infection after hip arthroplasty. Clinical Orthopaedics and Related Research.
Meehan, J.P., B. Danielsen, S.H. Kim, A.A. Jamali, and R.H. White. 2014. Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. Journal of Bone and Joint Surgery (American) 96(7): 529–535.
Tsung JD, Rohrsheim JA, Whitehouse SL, Wilson MJ, and Howell JR. 2014. Management of periprosthetic joint infection after total hip arthroplasty using a custom made articulating spacer (CUMARS); the Exeter experience. The Journal of Arthroplasty.
Mandelin, J., T.F. Li, M. Liljestrom, M.E. Kroon, R. Hanemaaijer, S. Santavirta, and Y.T. Konttinen. 2003. Imbalance of RANKL/RANK/OPG system in interface tissue in loosening of total hip replacement. Journal of Bone and Joint Surgery (British) 85(8): 1196–1201.
Chen, D., X. Zhang, Y. Guo, S. Shi, X. Mao, X. Pan, and T. Cheng. 2012. MMP-9 inhibition suppresses wear debris-induced inflammatory osteolysis through downregulation of RANK/RANKL in a murine osteolysis model. International Journal of Molecular Medicine 30(6): 1417–1423.
Kim, K.J., S. Kotake, N. Udagawa, H. Ida, M. Ishii, I. Takei, T. Kubo, and M. Takagi. 2001. Osteoprotegerin inhibits in vitro mouse osteoclast formation induced by joint fluid from failed total hip arthroplasty. Journal of Biomedical Materials Research 58(4): 393–400.
Masui, T., S. Sakano, Y. Hasegawa, H. Warashina, and N. Ishiguro. 2005. Expression of inflammatory cytokines, RANKL and OPG induced by titanium, cobalt-chromium and polyethylene particles. Biomaterials 26(14): 1695–1702.
Wei, X., X. Zhang, M.J. Zuscik, M.H. Drissi, E.M. Schwarz, and R.J. O’Keefe. 2005. Fibroblasts express RANKL and support osteoclastogenesis in a COX-2-dependent manner after stimulation with titanium particles. Journal of Bone and Mineral Research 20(7): 1136–1148.
Pioletti, D.P., and A. Kottelat. 2004. The influence of wear particles in the expression of osteoclastogenesis factors by osteoblasts. Biomaterials 25(27): 5803–5808.
Lacey, D.L., E. Timms, H.L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, et al. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2): 165–176.
Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America 95(7): 3597–3602.
Hsu, H., D.L. Lacey, C.R. Dunstan, I. Solovyev, A. Colombero, E. Timms, H.L. Tan, G. Elliott, M.J. Kelley, I. Sarosi, et al. 1999. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proceedings of the National Academy of Sciences of the United States of America 96(7): 3540–3545.
Quinn, J.M., J. Elliott, M.T. Gillespie, and T.J. Martin. 1998. A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139(10): 4424–4427.
Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.S. Chang, R. Luthy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, et al. 1997. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89(2): 309–319.
Hofbauer, L.C., C.A. Kuhne, and V. Viereck. 2004. The OPG/RANKL/RANK system in metabolic bone diseases. Journal of Musculoskeletal & Neuronal Interactions 4(3): 268–275.
Achermann, Y., M. Vogt, M. Leunig, J. Wust, and A. Trampuz. 2010. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. Journal of Clinical Microbiology 48(4): 1208–1214.
Norton, A.J., S. Jordan, and P. Yeomans. 1994. Brief, high-temperature heat denaturation (pressure cooking): A simple and effective method of antigen retrieval for routinely processed tissues. Journal of Pathology 173(4): 371–379.
Xavier, L.L., G.G. Viola, A.C. Ferraz, C. Da Cunha, J.M. Deonizio, C.A. Netto, and M. Achaval. 2005. A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Research. Brain Research Protocols 16(1–3): 58–64.
Wang, C.J., Z.G. Zhou, A. Holmqvist, H. Zhang, Y. Li, G. Adell, and X.F. Sun. 2009. Survivin expression quantified by Image-Pro Plus compared with visual assessment. Applied Immunohistochemistry & Molecular Morphology 17(6): 530–535.
Hofbauer, L.C., and M. Schoppet. 2004. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292(4): 490–495.
Xu, J., M.D. Kauther, J. Hartl, and C. Wedemeyer. 2010. Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-kappaB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles. Journal of Orthopaedic Surgery and Research 5: 83.
Horiki, M., T. Nakase, A. Myoui, N. Sugano, T. Nishii, T. Tomita, T. Miyaji, and H. Yoshikawa. 2004. Localization of RANKL in osteolytic tissue around a loosened joint prosthesis. Journal of Bone and Mineral Metabolism 22(4): 346–351.
Zhang, L., T.H. Jia, A.C. Chong, L. Bai, H. Yu, W. Gong, P.H. Wooley, and S.Y. Yang. 2010. Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Therapy 17(10): 1262–1269.
Zhang, T., H. Yu, W. Gong, L. Zhang, T. Jia, P.H. Wooley, and S.Y. Yang. 2009. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials 30(30): 6102–6108.
Bori, G., E. Munoz-Mahamud, S. Garcia, C. Mallofre, X. Gallart, J. Bosch, E. Garcia, J. Riba, J. Mensa, and A. Soriano. 2011. Interface membrane is the best sample for histological study to diagnose prosthetic joint infection. Modern Pathology 24(4): 579–584.
Tohtz, S.W., M. Muller, L. Morawietz, T. Winkler, and C. Perka. 2010. Validity of frozen sections for analysis of periprosthetic loosening membranes. Clinical Orthopaedics and Related Research 468(3): 762–768.
Tamaki, Y., Y. Takakubo, K. Goto, T. Hirayama, K. Sasaki, Y.T. Konttinen, S.B. Goodman, and M. Takagi. 2009. Increased expression of toll-like receptors in aseptic loose periprosthetic tissues and septic synovial membranes around total hip implants. Journal of Rheumatology 36(3): 598–608.