Alteration of cytoskeletal structure, integrin distribution, and migratory activity by phagocytic challenge in cells from an ocular tissue—The trabecular meshwork

In Vitro Cellular & Developmental Biology - Animal - Tập 35 - Trang 144-149 - 1999
Lili Zhou1, Yuhong Li1, Beatrice Y. J. T. Yue1
1Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago.

Tóm tắt

The trabecular meshwork is a specialized tissue in the anterior chamber of the eye that regulates the aqueous humor outflow and controls the intraocular pressure. Cells in the trabecular meshwork are believed to be essential for maintenance of the outflow system, and their malfunctioning may lead to elevation of intraocular pressure and development of glaucoma. These cells are avid phagocytes. Using an in vitro tissue culture system, we have previously shown that bovine trabecular meshwork cells exhibited a short-term loss of cell-matrix adhesiveness after exposure to latex microspheres. The current study showed that 4 h after phagocytosis, the cytoskeletal structure in trabecular meshwork cells was disrupted, the formation of focal contact formation was limited, and the cellular migratory activity was increased. These in vitro responses paralleled those that occur in vivo. By 24 h, all the changes demonstrated returned to normal. Our data suggest that the short-term loss in cell-matrix cohesiveness observed after phagocytic challenge may be related to the reorganization of cytoskeletal structures and the decline of focal contact formation. The altered cell migration may also be interlinked.

Tài liệu tham khảo

Acott, T. S.; Wirtz, M. K. Biochemistry of aqueous outflow. In: Ritch, R.; Shields, M. B.; Krupin, T., ed. The glaucomas. 2nd edition, Vol. 1. St. Louis: Mosby; 1996:281–305. Barak, M. H.; Weinreb, R. N.; Ryder, M. I. Quantitative assessment of cynomolgus monkey trabecular cell phagocytosis and adsorption. Curr. Eye Res. 7:445–448; 1988. Bill, A. The drainage of aqueous humor. Invest. Ophthalmol. Vis. Sci. 14:1–3; 1975. Brown, E. J. Phagocytosis. BioEssays 17:109–117; 1995. Buller, C.; Johnson, D. H.; Tschumper, R. C. Human trabecular meshwork phagocytosis: observations in an organ culture system. Invest. Ophthalmol. Vis. Sci. 31:2156–2163; 1990. Burridge, K.; Chrzanowska-Wodnicka, M. Focal adhesions, contractility and signaling. Annu. Rev. Cell Dev. Biol. 12:463–519; 1996. Calthorpe, C. M.; Grierson, I. Fibronectin induces migration of bovine trabecular meshwork cells in vitro. Exp. Eye Res. 52:39–48; 1990. Chang, I. L.; Elner, S. G.; Yue, B. Y. J. T.; Cornicelli, A.; Kawa, J. E.; Elner, V. M. Expression of modified low-density lipoprotein receptors by trabecular meshwork cells. Curr. Eye Res. 10:1101–1112; 1991. Epstein, D. L.; Freddo, T. F.; Anderson, P. J.; Patterson, M. M.; Bassett-Chu, S. Experimental obstruction to aqueous outflow by pigment particles in living monkeys. Invest. Ophthalmol. Vis. Sci. 27:387–395; 1986. Ershov, A. V.; Lukiw, W. J.; Bazan, N. G. Selective transcription factor induction in retinal pigment epithelial cells during photoreceptor phagocytosis. J. Biol. Chem. 271:28458–28462; 1996. Grierson, I.; Chisholm, I. A. Clearance of debris from the iris through the drainage angle of the rabbit’s eye. Br. J. Ophthalmol. 62:694–704; 1978. Grierson, I.; Lee, W. R. Erythrocyte phagocytosis in the human trabecular meshwork. Br. J. Ophthalmol. 57:400–415; 1973. Grierson, I.; Pay, J.; Unger, W. G.; Ahmed, A. Phagocytosis of latex microspheres by bovine trabecular meshwork cells in culture. Graefes Arch. Clin. Exp. Ophthalmol. 234:536–544; 1986. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357; 1996. Higginbotham, E. J.; Yue, B. Y. J. T.; Crean, E.; Peace, J. Effects of ascorbic acid on trabecular meshwork cells in culture. Exp. Eye Res. 46:507–516; 1988. Hynes, R. O. Integrins: versatility, modulation and signaling. Cell 69:11–25; 1992. Johnson, D. H.; Richardson, T. M.; Epstein, D. L. Trabecular meshwork recovery after phagocytic challenge. Curr. Eye Res. 8:1121–1130; 1989. Juliano, R. L.; Haskill, S. Signal transduction from the extracellular matrix. J. Cell Biol. 120:577–585; 1993. McDonald, P. P.; Cassatella, M. A. Activation of transcription factor NF-κB by phagocytic stimuli in human neutrophils. FEBS Lett. 412:583–586; 1997. Ohlsson, K.; Linder, C.; Lundberg, E.; Axelsson, L. Release of cytokines and proteases from human peripheral blood mononuclear and polymorphonuclear cells following phagocytosis and LPS stimulation. Scand. J. Clin. Lab. Invest. 56:461–470; 1996. Palecek, S. P.; Loftus, J. C.; Ginsberg, M. H.; Lauffenburger, D. A.; Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540; 1996. Polansky, J. R.; Alvarado, J. A. Cellular mechanisms influencing the aqueous humor outflow pathway. In: Albert, A. M.; Jakobiec, F. A., ed. Principles and practice of ophthalmology. Philadelphia: W. B. Saunders; 1994:226–251. Rohen, J. W.; Van Der Zypen, E. The phagocytic activity of the trabecular meshwork endothelium: an electron microscopic study of the Vervet (Cercopithecus aethiops). Graefes Arch. Clin. Exp. Ophthalmol. 175:143–160; 1968. Sawaguchi, S.; Yue, B. Y. J. T.; Chang, I. L.; Wong, F.; Higginbotham, E. J. Ascorbic acid modulates collagen type I gene expression by cells from an eye tissue-trabecular meshwork. Cell. Mol. Biol. 38:587–604; 1992. Schwartz, M. A.; Schaller, M. D.; Ginsberg, M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11:549–599; 1995. Sherwood, M. E.; Richardson, T. M.; Epstein, D. L. Phagocytosis by trabecular meshwork cells: sequence of events in cats and monkeys. Exp. Eye Res. 46:881–895; 1988. SundarRaj, N.; Anderson, S.; Barbacci-Tobin, E. An intermediate filament-associated developmentally regulated protein in corneal fibroblasts. Curr. Eye Res. 7:937–946; 1988. Van Buskirk, E. M.; Leure-Dupree, A. E. Pathophysiology and electron microscopy of melanomalytic glaucoma. Am. J. Ophthalmol. 85:160–166; 1978. Weiss, S. J.; LoBuglio, A. F. Biology of disease: phagocyte-generated oxygen metabolites and cellular injury. Lab. Invest. 47:5–18; 1982. Wu, C.; Keivens, V. M.; O’Toole, T. E.; McDonald, J. A.; Ginsberg, M. H. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83:715–724; 1995. Yue, B. Y. J. T. The extracellular matrix and its modulation in the trabecular meshwork. Surv. Ophthalmol. 40:379–390; 1996. Yue, B. Y. J. T.; Elner, V. M.; Elner, S. G.; Davis, H. Lysosomal enzyme activities in cultured trabecular meshwork cells. Exp. Eye Res. 44:891–897; 1987. Yue, B. Y. J. T.; Higginbotham, E. J.; Chang, I. L. Ascorbic acid modulates the production of fibronectin and laminin by cells from an eye tissue-trabecular meshwork. Exp. Cell Res. 187:65–68; 1990. Yue, B. Y. J. T.; Kurosawa, A.; Elvart, J. L.; Tso, M. O. M. Monkey trabecular meshwork cells in culture: growth, morphologic and biochemical characteristics. Graefes Arch. Clin. Exp. Ophthalmol. 226:262–268; 1988. Zhou, L.; Fukuchi, T.; Kawa, J. E.; Higginbotham, E. J.; Yue, B. Y. J. T. Loss of cell-matrix cohesiveness after phagocytosis by trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 36:787–795; 1995. Zhou, L.; Li, Y.; Yue, B. Y. J. T. Glucocorticoid effects on the extracellular matrix proteins and integrins in bovine trabecular meshwork cells in relation to glaucoma. Int. J. Mol. Med. 1:339–346; 1998. Zhou, L.; Zhang, S. R.; Yue, B. Y. J. T. Adhesion of human trabecular meshwork cells to extracellular matrix proteins: roles and distribution of integrin receptors. Invest. Ophthalmol. Vis. Sci. 37:104–113; 1996.