Thay đổi trong biểu hiện Proteoglycan Chondroitin Sulfate tại điểm tâm của tủy sống liên quan đến sự mất chức năng hành vi ở chuột Yoshimura đi bằng đầu ngón chân

Neurochemical Research - Tập 39 - Trang 2394-2406 - 2014
Jun Wang1,2, Xiaofang Wang3, Wei Rong2, Jia Lv1, Feng Wei1, Zhongjun Liu1
1Department of Orthopedics, Peking University Third Hospital, Beijing, People’s Republic of China
2Medical Center Tsinghua University, Beijing, People’s Republic of China
3Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China

Tóm tắt

Mục tiêu của nghiên cứu này là khám phá mối tương quan giữa sự thay đổi trong biểu hiện proteoglycan chondroitin sulfate (CSPG) tại tâm điểm của tủy sống và sự mất chức năng hành vi ở chuột Yoshimura đi bằng đầu ngón chân. Chuột Yoshimura đi bằng đầu ngón chân (twy) và chuột Viện Nghiên cứu Ung thư (ICR) ở độ tuổi 20 và 26 tuần được sử dụng trong nghiên cứu này. Các phương pháp đánh giá hành vi, vi tính hóa vi mô và nhuộm miễn dịch huỳnh quang đã được thực hiện. Tủy sống bị chèn ép được phân tích mô học. Kết quả cho thấy rằng biểu hiện CSPG cao hơn một cách đáng kể tại tủy sống bị chèn ép của chuột twy so với tủy sống bình thường của chuột ICR. Ở tuần thứ 26, một khối hóa xương lớn ở dây chằng dài sau của C1–3 đã được quan sát rõ ràng trong hình ảnh micro-CT. Chúng tôi thấy rằng điểm số BMS có mối tương quan đáng kể với biểu hiện của protein sợi glial, CSPG và hyaluronan (P < 0,05). Những phát hiện này gợi ý rằng chấn thương do nén thúc đẩy biểu hiện CSPG cao hơn tại tủy sống bị chèn ép ở chuột twy. Hơn nữa, sự thay đổi trong biểu hiện CSPG tại điểm tâm của tủy sống liên quan đến sự mất chức năng hành vi ở chuột twy.

Từ khóa

#Chondroitin sulfate proteoglycan #tủy sống #chuột Yoshimura #chức năng hành vi #chấn thương do nén

Tài liệu tham khảo

Uchida K, Nakajima H, Watanabe S, Yayama T, Guerrero AR, Inukai T, Hirai T, Sugita D, Johnson WE, Baba H (2012) Apoptosis of neurons and oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy): possible pathomechanism of human cervical compressive myelopathy. Eur Spine J 21:490–497 Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG (2009) Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis 33:149–163 Yamaura I, Yone K, Nakahara S, Nagamine T, Baba H, Uchida K, Komiya S (2002) Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression. Spine 27:21–26 Karadimas SK, Klironomos G, Papachristou DJ, Papanikolaou S, Papadaki E, Gatzounis G (2013) Immunohistochemical profile of NF-kappaB/p50, NF-kappaB/p65, MMP-9, MMP-2, and u-PA in experimental cervical spondylotic myelopathy. Spine 38:4–10 Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T (2011) Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy 7:1462–1471 Xu P, Gong WM, Li Y, Zhang T, Zhang K, Yin DZ, Jia TH (2008) Destructive pathological changes in the rat spinal cord due to chronic mechanical compression. Laboratory investigation. J Neurosurg Spine 8:279–285 Watanabe K, Konno S, Sekiguchi M, Kikuchi S (2007) Spinal stenosis: assessment of motor function, VEGF expression and angiogenesis in an experimental model in the rat. Eur Spine J 16:1913–1918 Denda H, Kimura S, Yamazaki A, Hosaka N, Takano Y, Imura K, Yajiri Y, Endo N (2011) Clinical significance of cerebrospinal fluid nitric oxide concentrations in degenerative cervical and lumbar diseases. Eur Spine J 20:604–611 Harkey HL, Al-Mefty O, Marawi I (1995) Experimental chronic compressive cervical myelopathy: effects of decompression. J Neurosurg Spine 83:336–341 Pinazo B, Seron M, Benet A (1999) Compression medullar pormetastasis departs dehepatocarcinoma. Med Internal 16:587–589 Hu Y, Wen CY, Li TH, Cheung MM, Wu EX, Luk KD (2011) Somatosensory-evoked potentials as an indicator for the extent of ultrastructural damage of the spinal cord after chronic compressive injuries in a rat model. Clin Neurophysiol 122:1440–1447 Takano M, Komaki Y, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Okano H, Nakamura M (2013) In vivo tracing of neural tracts in tiptoe walking Yoshimura mice by diffusion tensor tractography. Spine 38:E66–E72 Hirai T, Uchida K, Nakajima H, Guerrero AR, Takeura N, Watanabe S, Sugita D, Yoshida A, Johnson WE, Baba H (2013) The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS ONE 8:e64528 Uchida K, Yayama T, Sugita D, Nakajima H, Rodriguez Guerrero A, Watanabe S, Roberts S, Johnson WE, Baba H (2012) Initiation and progression of ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur Spine J 21:149–155 Zhu D, Mackenzie NC, Millan JL, Farquharson C, MacRae VE (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 6:e19595 Inukai T, Uchida K, Nakajima H, Yayama T, Kobayashi S, Mwaka E, Guerrero AR, Baba H (2009) Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mous (twy/twy) sustaining chronic mechanical compression. Spine 34:2848–2857 Yamaura I, Yone K, Nakahara S, Nagamine T, Baba H, Uchida K (2002) Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression. Spine 27:21–26 Yamazaki M, Moriya H, Goto S, Saitoh Y, Arai K, Nagai Y (1991) Increased type XI collagen expression in the spinal hyperostotic mouse (TWY/TWY). Calcif Tissue Int 48:182–189 Jeong SR, Kwon MJ, Lee HG, Joe EH, Lee JH, Kim SS, Suh-Kim H, Kim BG (2012) Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 233:312–322 Andrews EM, Richards RJ, Yin FQ, Viapiano MS, Jakeman LB (2012) Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 235:174–187 Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84:306–316 Huang X, Kim JM, Kong TH, Park SR, Ha Y, Kim MH, Park H, Yoon SH, Park HC, Park JO, Min BH, Choi BH (2009) GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J Neurol Sci 277:87–97 Bednarik J, Kadanka Z, Dusek L, Kerkovsky M, Vohanka S, Novotny O, Urbanek I, Kratochvilova D (2008) Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J 17:421–431 Engesser-Cesar C, Anderson AJ, Basso DM, Edgerton VR, Cotman CW (2005) Voluntary wheel running improves recovery from a moderate spinal cord injury. J Neurotrauma 22:157–171 Meyer K, Palmer J (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634 Almond A (2007) Hyaluronan. Cell Mol Life Sci 64:1591–1596 Atkins EDT, Phelps CF, Sheehan JK (1972) The conformation of the mucopolysaccharides. Biochem J 128:1255–1263 Sherman LS, Back SA (2008) A ‘GAG’ reflex prevents repair of the damaged CNS. Trends Neurosci 31:44–52 Struve J, Maher PC, Li YQ, Kinney S, Fehlings MG, Kuntz CT, Sherman LS (2005) Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia 52:16–24 Meszar Z, Felszeghy S, Veress G, Matesz K, Szekely G, Modis L (2008) Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos. Brain Res Bull 75:414–418 Jager C, Lendvai D, Seeger G, Bruckner G, Matthews RT, Arendt T, Alpar A, Morawski M (2013) Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience 238:168–184 Yu WR, Liu T, Kiehl TR, Fehlings MG (2011) Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 134:1277–1292 Wang J, Rong W, Hu X, Liu X, Jiang L, Ma Y, Dang G, Liu Z, Wei F (2012) Hyaluronan tetrasaccharide in the cerebrospinal fluid is associated with self-repair of rats after chronic spinal cord compression. Neuroscience 210:467–480 Erkki R (1996) Brain extracellular matrix. Glycobiology 6:489–492 Okawa A (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19:271–273 Okawa A, Ikegawa S, Nakamura I, Goto S, Moriya H, Nakamura Y (1998) Mapping of a gene responsible for twy (tip-toe walking Yoshimura), a mouse model of ossification of the posterior longitudinal ligament of the spine (OPLL). Mamm Genome 9:155–156 Torigoe K, Tanaka HF, Ohkochi H, Miyasaka M, Yamanokuchi H, Yoshidad K, Yoshida T (2011) Hyaluronan tetrasaccharide promotes regeneration of peripheral nerve: in vivo analysis by film model method. Brain Res 1385:87–92 Campo GM, Avenoso A, Nastasi G, Micali A, Prestipino V, Vaccaro M, D’Ascola A, Calatroni A, Campo S (2011) Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim Biophys Acta 1812:1170–1181 Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A (2010) Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol 80:480–490 Abaskharoun M, Bellemare M, Lau E, Margolis RU (2010) Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. Brain Res 1327:6–15 Lin CM, Lin JW, Chen YC, Shen HH, Wei L, Yeh YS, Chiang YH, Shih R, Chiu PL, Hung KS, Yang LY, Chiu WT (2009) Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats. Surg Neurol 72(Suppl 2):S50–S54 Sherman LS, Struve JN, Rangwala R, Wallingford NM, Tuohy TM, Kuntz CT (2002) Hyaluronate-based extracellular matrix: keeping glia in their place. Glia 38:93–102 Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647 Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA (2009) NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol 9:32 Quaglia X, Beggah AT, Seidenbecher C, Zurn AD (2008) Delayed priming promotes CNS regeneration post-rhizotomy in Neurocan and Brevican-deficient mice. Brain 131:240–249 Minor K, Tang X, Kahrilas G, Archibald SJ, Davies JE, Davies SJ (2008) Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons. Neurobiol Dis 32:88–95 Wang J, Ma C, Rong W, Jing H, Hu X, Liu X, Jiang L, Wei F, Liu Z (2012) Bog bilberry anthocyanin extract improves motor functional recovery by multifaceted effects in spinal cord injury. Neurochem Res 37(12):2814–2825