Alteration and mineralization at the Zhibula Cu skarn deposit, Gangdese belt, Tibet

Ore Geology Reviews - Tập 75 - Trang 304-326 - 2016
Jing Xu1, Youye Zheng1,2, Xiang Sun2, Yahui Shen2
1State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
2State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

Tài liệu tham khảo

Atkinson, 1978, Skarn formation and mineralization in the contact Aureole at Carr Fork, Bingham, Utah, Econ. Geol., 73, 1326, 10.2113/gsecongeo.73.7.1326 Audétat, 1999, Mobility and H2O loss from fluid inclusions in natural quartz crystals, Contrib. Mineral. Petrol., 137, 1, 10.1007/s004100050578 Ault, 2004, Sulfur and lead isotope study of the El Mochito Zn–Pb–Ag deposit, Econ. Geol., 99, 1223, 10.2113/gsecongeo.99.6.1223 Baker, 2003, Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico, Mineral. Deposita, 38, 474, 10.1007/s00126-002-0306-3 Baker, 2004, Composition and evolution of ore fluids in a magmatic–hydrothermal skarn deposit, Geology, 32, 117, 10.1130/G19950.1 Becker, 2008, Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O–NaCl solutions (>30wt.% NaCl): application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits, Econ. Geol., 103, 539, 10.2113/gsecongeo.103.3.539 Berman, 1985, Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO–H2O–O2, Contrib. Mineral. Petrol., 89, 168, 10.1007/BF00379451 Bertelli, 2009, Geochemical modelling of a Zn–Pb skarn: constraints from LA-ICP-MS analysis of fluid inclusions, J. Geochem. Explor., 102, 13, 10.1016/j.gexplo.2008.11.015 Bodnar, 1993, Revised equation and table for determining the freezing point depression of H2O–NaCl solutions, Geochim. Cosmochim. Acta, 57, 683, 10.1016/0016-7037(93)90378-A Bowman, 1998, Stable-isotope systematics of skarns, Mineral. Assoc. Can. Short Course, 26, 99 Brown, 1995, MacFlinCor and its application to fluids in Archean lode-gold deposits, Geochim. Cosmochim. Acta, 59, 3943, 10.1016/0016-7037(95)00254-W Burke, 2001, Raman microspectrometry of fluid inclusions, Lithos, 55, 139, 10.1016/S0024-4937(00)00043-8 Calagari, 2006, The mineralogy of copper-bearing skarn to the east of the Sungun-Chay River, East-Azarbaidjan, Iran, J. Asian Earth Sci., 28, 423, 10.1016/j.jseaes.2005.11.009 Canet, 2011, The Zn–Pb–Ag skarns of Zacatepec, Northeastern Oaxaca, Mexico: a study of mineral assemblages and ore-forming fluids, Ore Geol. Rev., 39, 277, 10.1016/j.oregeorev.2011.03.007 Chang, 1983, On strata-bound skarn deposites, Mineral. Deposita, 2, 11 Chang, 2004, The magmatic–hydrothermal transition-evidence from quartz phenocryst textures and endoskarn abundance in Cu–Zn skarns at the Empire mine, Idaho, USA, Chem. Geol., 210, 149, 10.1016/j.chemgeo.2004.06.018 Chaussidon, 1990, Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): an ion microprobe study, Geochim. Cosmochim. Acta, 54, 2835, 10.1016/0016-7037(90)90018-G Chen, 2009, Nature of ore-fluids of intercontinental intrusion-related hypothermal deposits and its difference from those in island arcs, Acta Petrol. Sin., 25, 2477 Chen, 2007, Geodynamic settings and tectonic model of skarn gold deposits in China: an overview, Ore Geol. Rev., 31, 139, 10.1016/j.oregeorev.2005.01.001 Chen, 2012, Fluid inclusions and hydrogen, oxygen, sulfur isotopes of Nuri Cu–W–Mo deposit in the southern Gangdese, Tibet, Resour. Geol., 62, 42, 10.1111/j.1751-3928.2011.00179.x Chung, 2003, Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet, Geology, 31, 1021, 10.1130/G19796.1 Clayton, 1963, The use of bromine pent a fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis, Geochim. Cosmochim. Acta, 27, 43, 10.1016/0016-7037(63)90071-1 Clayton, 1972, Oxygen isotope exchange between quartz and water, J. Geophys. Res., 77, 3057, 10.1029/JB077i017p03057 Cline, 1994, Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit, Econ. Geol., 89, 1780, 10.2113/gsecongeo.89.8.1780 Coleman, 1982, Reduction of water with zinc for hydrogen isotope analysis, Anal. Chem., 54, 993, 10.1021/ac00243a035 De Hoog, 2009, Hydrogen-isotope systematics in degassing basaltic magma and application to Indonesian arc basalts, Chem. Geol., 266, 256, 10.1016/j.chemgeo.2009.06.010 Deer, 1992, 1 Deng, 2014, Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res., 26, 419, 10.1016/j.gr.2013.08.002 Driesner, 2007, The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000bar, and 0 to 1 XNaCl, Geochim. Cosmochim. Acta, 71, 4880, 10.1016/j.gca.2006.01.033 Droop, 1987, A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431, 10.1180/minmag.1987.051.361.10 Einaudi, 1981, Skarn deposits, Econ. Geol., 75th anniversary volume, 317 Fan, 2004, Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, northern China, Ore Geol. Rev., 25, 301, 10.1016/j.oregeorev.2004.05.001 Fournier, 1992, The influences of depth of burial and the brittle-ductile transition on the evolution of magmatic fluids, Geol. Surv. Jpn. Rep., 277, 57 Gemmell, 1992, Genesis of the Aguilar zinc-lead-silver deposit, Argentina; contact metasomatic vs. sedimentary exhalative, Econ. Geol., 87, 2085, 10.2113/gsecongeo.87.8.2085 Geng, 2005, Geochemistry and genesis of the Yeba volcanic rocks in the Gangdese magmatic arc, Tibet, Earth Sci., 30, 747 Harris, 1982, Skarn deposits in the Yerington district, Nevada; metasomatic skarn evolution near Ludwig, Econ. Geol., 77, 877, 10.2113/gsecongeo.77.4.877 Hedenquist, 1992, The thermal and geochemical structure of geothermal and epithermal systems: a framework for interpreting fluid inclusion data, Eur. J. Mineral., 4, 989, 10.1127/ejm/4/5/0989 Hedenquist, 1998, Evolution of an intrusion-centered hydrothermal system; far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines, Econ. Geol., 93, 373, 10.2113/gsecongeo.93.4.373 Hezarkhani, 1999, Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran, Mineral. Deposita, 34, 770, 10.1007/s001260050237 Hoefs, 2009, 285 Hou, 2011, Porphyry Cu (−Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain, Ore Geol. Rev., 39, 21, 10.1016/j.oregeorev.2010.09.002 Ishihara, 2000, Source diversity of ore sulfur from Mesozoic–Cenozoic Miner. Deposits in the Korean peninsula region, Resour. Geol., 50, 203, 10.1111/j.1751-3928.2000.tb00070.x Jamtveit, 1991, Oscillatory zonation patterns in hydrothermal grossular-andradite garnet; nonlinear dynamics in regions of immiscibility, Am. Mineral., 76, 1319 Kamvong, 2009, The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand: evidence from fluid inclusion and sulfur isotope studies, J. Asian Earth Sci., 34, 624, 10.1016/j.jseaes.2008.09.004 Klemm, 2008, Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA, Mineral. Deposita, 43, 533, 10.1007/s00126-008-0181-7 Koděra, 2010, Formation of the Vysoká-Zlatno Cu–Au skarn–porphyry deposit, Slovakia, Mineral. Deposita, 45, 817, 10.1007/s00126-010-0304-9 Li, 2005, Molybdenite Re–Os dating of Jiama and Zhibula polymetallic copper deposits in Gangdese metallogenic belt of Tibet and its significance, Mineral. Deposita, 24, 481 Li, G.M., Li, F.Q., Duan, Z.M., 2012. The assessment report of geology and mineral resources survey in Gangdese metallogenic belt, Tibet (in Chinese, unpublished). Lu, 1999, Geochemical evidence of Exhalative-Sedimentary ore-bearing Skarn Yangla copper mineralization concentrated area, Deqin County, Northwestern Yunman Province, Earth Sci., 24, 298 Lu, 2003, Mineralization and fluid inclusion study of the Shizhuyuan W–Sn–Bi–Mo–F skarn deposit, Hunan Province, China, Econ. Geol., 98, 955, 10.2113/gsecongeo.98.5.955 Maher, 2010, Skarn alteration and Mineralization at Coroccohuayco, Tintaya District, Peru, Econ. Geol., 105, 263, 10.2113/gsecongeo.105.2.263 Mei, 2014, Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing'an Range: evidence from fluid inclusions and isotope analyses, Ore Geol. Rev., 64, 239, 10.1016/j.oregeorev.2014.07.015 Meinert, 1997, Geology, zonation, and fluid evolution of the Big Gossan Cu–Au skarn deposit, Ertsberg district, Irian Jaya, Econ. Geol., 92, 509, 10.2113/gsecongeo.92.5.509 Meinert, 2003, Formation of anhydrous and hydrous skarn in Cu–Au ore deposits by magmatic fluids, Econ. Geol., 98, 147, 10.2113/gsecongeo.98.1.147 Meinert, 2005, World skarn deposits, Econ. Geol., 100th anniversary volume, 299 Ohmoto, 1972, Systematics of sulfur and carbon isotopes in hydrothermal ore deposits, Econ. Geol., 67, 551, 10.2113/gsecongeo.67.5.551 Ohmoto, 1997, Sulfur and carbon isotopes, 517 Ohmoto, 1979, Isotopes of sulfur and carbon, 509 O'Neil, 1969, Oxygen isotope fracdonation in divalent metal carbonates, J. Chem. Phys., 51, 5547, 10.1063/1.1671982 Oyman, 2010, Geochemistry, mineralogy and genesis of the Ayazmant Fe–Cu skarn deposit in Ayvalik, (Balikesir), Turkey, Ore Geol. Rev., 37, 175, 10.1016/j.oregeorev.2010.03.002 Pinckney, 1972, Fractionation of sulfur isotopes during ore deposition in the Upper Mississippi Valley zinc–lead district, Econ. Geol., 67, 315, 10.2113/gsecongeo.67.3.315 Robinson, 1975, Quantitative preparation of sulphur dioxide for 34S/32S analyses from sulphides by combustion with cuprous oxide, Anal. Chem., 47, 1179, 10.1021/ac60357a026 Roedder, 1980, Geologic pressure determinations from fluid inclusion studies, Annu. Rev. Earth Planet. Sci., 8, 263, 10.1146/annurev.ea.08.050180.001403 Samson, 2008, Source of fluids forming distal Zn–Pb–Ag skarns: evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito, Honduras, Geology, 36, 947, 10.1130/G25214A.1 Seward, 1997, Metal Transport by Hydrothermal Ore Fluids, Geochem. Hydrotherm. Ore Deposits, 3, 435 She, 2005, Characteristics and metallogenetic potential of skarn copper–lead–zinc polymetallic deposits in central eastern Gangdese, Mineral. Deposita, 24, 508 Shepherd, 1985, 239 Shu, 2013, Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: evidence from isotopes (S, Pb) and fluid inclusions, Econ. Geol., 108, 835, 10.2113/econgeo.108.4.835 Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3 Singoyi, 2001, A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: implications for ore genesis, Chem. Geol., 173, 239, 10.1016/S0009-2541(00)00278-3 Smith, 2004, The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system, J. Petrol., 45, 457, 10.1093/petrology/egg087 Soloviev, 2013, Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au–(Cu) skarn and porphyry deposit, Polar Ural, Russia, Mineral. Deposita, 48, 603, 10.1007/s00126-012-0449-9 Sterner, 1988, Synthetic fluid inclusions.V. Solubility relations in the system NaCl–KCl–H2O under vapor-saturated conditions, Geochim. Cosmochim. Acta, 52, 989, 10.1016/0016-7037(88)90254-2 Sun, 2016, Identifying geochemical anomalies associated with Sb–Au–Pb–Zn–Ag mineralization in North Himalaya, southern Tibet, Ore Geol. Rev., 73, 1, 10.1016/j.oregeorev.2015.10.020 Sun, 2013, Mafic enclaves at Jiru porphyry Cu deposit, southern Tibet: implication for the Eocene magmatichydrothermal Cu mineralization, Acta Geol. Sin. (Engl. Ed.), 87, 778 Suzuoki, 1976, Hydrogen isotope fractionation between O–H-bearing minerals and water, Geochim. Cosmochim. Acta, 40, 1229, 10.1016/0016-7037(76)90158-7 Tang, 2011, An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet, Mineral. Deposita, 32, 179 Taylor, 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 69, 843, 10.2113/gsecongeo.69.6.843 Taylor, B.E., 1976. Origin and significance of C–O–H fluids in the fomation of Ca–Fe–Si skam, Osgood Mountains, Humboldt County, Nevada. Unpublished PhD thesis, Stanford University. 306. Törnebohm, 1875, 21 Vallance, 2009, Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern Ecuador), Mineral. Deposita, 44, 389, 10.1007/s00126-009-0238-2 Van den Kerkhof, 2001, Fluid inclusion petrography, Lithos, 55, 27, 10.1016/S0024-4937(00)00037-2 Wang, 2001, Ore-forming fluid and metallization of the Huanggangliang skarn Fe–Sn deposit, Inner Mongolia, Sci. China Ser. D Earth Sci., 44, 735, 10.1007/BF02907203 Wilkinson, 2001, Fluid inclusions in hydrothermal ore deposits, Lithos, 55, 229, 10.1016/S0024-4937(00)00047-5 Wilkinson, 2011, Chemical mass transfer during hydrothermal alteration of controls of seafloor subsidence, sedimentation and Zn–Pb mineralization in the Irish Carboniferous, Chem. Geol., 289, 55, 10.1016/j.chemgeo.2011.07.008 Williams-Jones, 2010, The genesis of distal zinc skarns: Evidence from the Mochito deposit, Honduras, Econ. Geol., 105, 1411, 10.2113/econgeo.105.8.1411 Wu, 1992, On magmatic skarn-a new type of skarn, Geol. Anhui, 2, 12 Wu, 2016, Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet, Ore Geol. Rev., 73, 83, 10.1016/j.oregeorev.2015.10.023 Xiao, 2011, Distributions and characters of Zhibula-Langmujiaguo skarn Cu deposits environing the Qulong porphyry Cu-Mo deposit and their implications for ore-search towards to the deep subsurface, Geol. Explor., 47, 43 Xu, 2014, Mineral characteristics in the Zhibula skarn Cu deposit of Tibet and their geological significance, Earth Sci., 39, 654 Yao, 2015, Petrography, chronology and Hf isotope constraints on origin of the ore-bearing granodiorite in Zhibula copper deposit, Tibet, Geotecton. Metallog., 39, 315 Yin, 2000, Geologic evolution of the Himalayan–Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211, 10.1146/annurev.earth.28.1.211 Yokoro, 2013, Unique origin of skarn at the Ohori base metal deposit, Yamagata Prefecture, NE Japan: C, O and S Isotopic Study, Resour. Geol., 63, 384, 10.1111/rge.12017 Zeng, 2009, Geology and lead isotope study of the Baiyinnuo’er Zn–Pb–Ag deposit, south segment of the Da Hinggan Mountains, northeastern China, Resour. Geol., 59, 170, 10.1111/j.1751-3928.2009.00088.x Zhai, 2014, S–Pb isotopic geochemistry, U–Pb and Re–Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China, Ore Geol. Rev., 59, 109, 10.1016/j.oregeorev.2013.12.005 Zhang, 2007, High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Provice, China: their origin and implications for ore genesis, Ore Geol. Rev., 31, 247, 10.1016/j.oregeorev.2004.11.002 Zhang, 2013, Alteration, mineralization, and genesis of the zoned Tongshan skarn-type copper deposit, Anhui, China, Ore Geol. Rev., 53, 489, 10.1016/j.oregeorev.2013.02.009 Zheng, 2000, 10, 12 Zheng, 2004, Finding, characteristics and significances of Qulong super-large porphyry copper (molybdenum) deposit, Tibet, Earth Sci., 29, 103 Zheng, 2013 Zheng, 2014, Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: implications for Eocene and Miocene magma sources and resource potential, J. Asian Earth Sci., 9, 842, 10.1016/j.jseaes.2013.03.029 Zheng, 2015, Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt, J. Asian Earth Sci., 103, 23, 10.1016/j.jseaes.2014.11.036 Zhu, 2012, Geochronology and fluid inclusion studies of the Lailisigaoer and Lamasu porphyry–skarn Cu–Mo deposits in Northwestern Tianshan, China, J. Asian Earth Sci., 49, 116, 10.1016/j.jseaes.2011.12.013