AlphaScreen HTS and Live-Cell Bioluminescence Resonance Energy Transfer (BRET) Assays for Identification of Tau–Fyn SH3 Interaction Inhibitors for Alzheimer Disease
Tài liệu tham khảo
Ittner, 2010, Dendritic Function of Tau Mediates Amyloid-Beta Toxicity in Alzheimer’s Disease Mouse Models, Cell, 142, 387, 10.1016/j.cell.2010.06.036
Roberson, 2011, Amyloid-β/Fyn–Induced Synaptic, Network, and Cognitive Impairments Depend on Tau Levels in Multiple Mouse Models of Alzheimer’s Disease, J. Neurosci., 31, 700, 10.1523/JNEUROSCI.4152-10.2011
Roberson, 2007, Reducing Endogenous Tau Ameliorates Amyloid β–Induced Deficits in an Alzheimer’s Disease Mouse Model, Science, 316, 750, 10.1126/science.1141736
Holth, 2013, Tau Loss Attenuates Neuronal Network Hyperexcitability in Mouse and Drosophila Genetic Models of Epilepsy, J. Neurosci., 33, 1651, 10.1523/JNEUROSCI.3191-12.2013
Li, Z., Hall, A. M., Kelinske, M., et al. Seizure Resistance without Parkinsonism in Aged Mice after Tau Reduction. Neurobiol. Aging, 2014.
DeVos, 2013, Antisense Reduction of Tau in Adult Mice Protects against Seizures, J. Neurosci., 33, 12887, 10.1523/JNEUROSCI.2107-13.2013
Lee, 1998, Tau Interacts with src-Family Non-Receptor Tyrosine Kinases, J. Cell Sci., 111, 3167, 10.1242/jcs.111.21.3167
Kojima, 1998, Higher Seizure Susceptibility and Enhanced Tyrosine Phosphorylation of N-Methyl-D-Aspartate Receptor Subunit 2B in Fyn Transgenic Mice, Learn. Mem., 5, 429, 10.1101/lm.5.6.429
Cain, 1995, Fyn Tyrosine Kinase Is Required for Normal Amygdala Kindling, Epilepsy Res., 22, 107, 10.1016/0920-1211(95)00029-1
Larson, 2012, The Complex PrP(c)-Fyn Couples Human Oligomeric Aβ with Pathological Tau Changes in Alzheimer’s Disease, J. Neurosci., 32, 16857, 10.1523/JNEUROSCI.1858-12.2012
Cochran, 2014, The Dendritic Hypothesis for Alzheimer’s Disease Pathophysiology, Brain Res. Bull., 103, 18, 10.1016/j.brainresbull.2013.12.004
Nygaard, 2014, Fyn Kinase Inhibition as a Novel Therapy for Alzheimer’s Disease, Alzheimers Res. Ther., 6, 8, 10.1186/alzrt238
Grant, 1992, Impaired Long-Term Potentiation, Spatial Learning, and Hippocampal Development in Fyn Mutant Mice, Science, 258, 1903, 10.1126/science.1361685
Bhaskar, 2005, Disease-Related Modifications in Tau Affect the Interaction between Fyn and Tau, J. Biol. Chem., 280, 35119, 10.1074/jbc.M505895200
Reynolds, 2008, Phosphorylation Regulates Tau Interactions with Src Homology 3 Domains of Phosphatidylinositol 3-Kinase, Phospholipase Cgamma1, Grb2, and Src Family Kinases, J. Biol. Chem., 283, 18177, 10.1074/jbc.M709715200
Wenham, 2006, Development of High-Throughput Screening Assays for Kinase Drug Targets Using AlphaScreen Technology, 53
Wood, 1989, Complementary DNA Coding Click Beetle Luciferases Can Elicit Bioluminescence of Different Colors, Science, 244, 700, 10.1126/science.2655091
Shcherbo, 2009, Far-Red Fluorescent Tags for Protein Imaging in Living Tissues, Biochem J., 418, 567, 10.1042/BJ20081949
Zhang, 1999, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, J. Biomol. Screen., 4, 67, 10.1177/108705719900400206
Dunnett, 1955, A Multiple Comparison Procedure for Comparing Several Treatments with a Control, J. Am. Stat. Assoc., 50, 1096, 10.1080/01621459.1955.10501294
Abdi, 2007, The Bonferonni and Šidák Corrections for Multiple Comparisons, Encyclop. Meas. Stat., 3, 103
Usardi, 2011, Tyrosine Phosphorylation of Tau Regulates Its Interactions with Fyn SH2 Domains, but Not SH3 Domains, Altering the Cellular Localization of Tau, FEBS J., 278, 2927, 10.1111/j.1742-4658.2011.08218.x
Kay, 2000, The Importance of Being Proline: The Interaction of Proline-Rich Motifs in Signaling Proteins with Their Cognate Domains, FASEB J., 14, 231, 10.1096/fasebj.14.2.231
Jin, 2011, Soluble Amyloid β-Protein Dimers Isolated from Alzheimer Cortex Directly Induce Tau Hyperphosphorylation and Neuritic Degeneration, Proc. Natl. Acad. Sci. U. S. A., 108, 5819, 10.1073/pnas.1017033108
Zempel, 2010, Aβ Oligomers Cause Localized Ca(2+) Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines, J. Neurosci., 30, 11938, 10.1523/JNEUROSCI.2357-10.2010
Jeganathan, 2008, Proline-Directed Pseudo-Phosphorylation at AT8 and PHF1 Epitopes Induces a Compaction of the Paperclip Folding of Tau and Generates a Pathological (MC-1) Conformation, J. Biol. Chem., 283, 32066, 10.1074/jbc.M805300200
Mukrasch, 2007, The “Jaws” of the Tau-Microtubule Interaction, J. Biol. Chem., 282, 12230, 10.1074/jbc.M607159200
Miloud, 2007, Quantitative Comparison of Click Beetle and Firefly Luciferases for In Vivo Bioluminescence Imaging, J. Biomed. Opt., 12, 054018, 10.1117/1.2800386
Huang, 2012, Isolation of Monobodies That Bind Specifically to the SH3 Domain of the Fyn Tyrosine Protein Kinase, N. Biotechnol., 29, 526, 10.1016/j.nbt.2011.11.015
Pajouhesh, 2005, Medicinal Chemical Properties of Successful Central Nervous System Drugs, NeuroRx, 2, 541, 10.1602/neurorx.2.4.541
Chapuis, 2013, Increased Expression of BIN1 Mediates Alzheimer Genetic Risk by Modulating Tau Pathology, Mol. Psychiatry, 18, 1225, 10.1038/mp.2013.1
Mullard, 2012, Protein-Protein Interaction Inhibitors Get into the Groove, Nat. Rev. Drug Discov., 11, 173, 10.1038/nrd3680
Oneyama, 2003, Synthetic Inhibitors of Proline-Rich Ligand-Mediated Protein-Protein Interaction: Potent Analogs of UCS15A, Chem. Biol., 10, 443, 10.1016/S1074-5521(03)00101-7
Inglis, 2004, Identification and Specificity Studies of Small-Molecule Ligands for SH3 Protein Domains, J. Med. Chem., 47, 5405, 10.1021/jm049533z
Li, 2005, Acquisition of Fyn-Selective SH3 Domain Ligands via a Combinatorial Library Strategy, Chem. Biol., 12, 905, 10.1016/j.chembiol.2005.06.007
Mukrasch, 2009, Structural Polymorphism of 441-Residue Tau at Single Residue Resolution, PLoS Biol., 7, e34, 10.1371/journal.pbio.1000034